Skip to main content
Log in

Femoral geometric parameters and BMD measurements by DXA in adult patients with different types of osteogenesis imperfecta

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Objectives

Osteogenesis imperfecta (OI) is an inherited disorder characterized by increased bone fragility with recurrent fractures that leads to skeletal deformities in severe cases. Consequently, in most OI patients, the hip is the only reliable measuring site for estimating future fracture risk. The aim of the study was to assess the applicability of hip structure analysis (HSA) by DXA in adult patients with osteogenesis imperfecta.

Materials and methods

We evaluated bone mineral density (BMD) and hip structure analysis (HSA) by DXA, including cross-sectional area (CSA), cross-sectional moment of inertia (CSMI) and femoral strength index (FSI) in 30 adult patients with different types of OI and 30 age-matched healthy controls (CO). The OI total group (OI-tot) was divided into two subgroups: the mild OI I group (OI-I) and the more severe OI III and IV group (OI-III-IV).

Results

The mean neck BMD of OI-I and OI-III-IV were significantly lower compared to CO (−15.9 %, p < 0.005 and −37.5 %, p < 0.001 respectively). Similar results were observed at trochanter and total hip. CSA and the CSMI value were significantly lower for OI-I (−23.2 %, p < 0.001) and OI-III-IV (−45.9 %, p < 0.001) in comparison to CO. In addition, significant differences were found between the mild OI-I and the severe OI-III-IV group (−29.6 %, p < 0.05). FSI was significantly decreased in the OI-III-IV (25.7 %, p < 0.05) in comparison to the CO. Furthermore, significant correlations between BMD and HSA and between HSA and height and weight were found in osteogenesis imperfecta and controls.

Conclusion

BMD measurement in osteogenesis imperfecta patients is very critical. The combination of BMD and geometric structural measurements at the hip in osteogenesis imperfecta patients may represent an additional helpful means in estimating bone strength and fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rauch F, Travers R, Parfitt AM, Glorieux FH. Static and dynamic bone histomorphometry in children with osteogenesis imperfecta. Bone. 2000;26:581–9.

    Article  PubMed  CAS  Google Scholar 

  2. Rauch F, Travers R, Plotkin H, Glorieux FH. The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest. 2002;110:1293–9.

    PubMed  CAS  Google Scholar 

  3. Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363:1377–85.

    Article  PubMed  CAS  Google Scholar 

  4. Gatti D, Viapiana O, Lippolis I, et al. Intravenous bisphosphonate therapy increases radial width in adults with osteogenesis imperfecta. J Bone Miner Res. 2005;20:1323–6.

    Article  PubMed  CAS  Google Scholar 

  5. Rousseau JC, Chevrel G, Schott AM, Garnero P. Increased cartilage type II collagen degradation in patients with osteogenesis imperfecta used as a human model of bone type I collagen alterations. Bone. 2010;46:897–900.

    Article  PubMed  CAS  Google Scholar 

  6. Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F. Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int. 2008;82:263–70.

    Article  PubMed  CAS  Google Scholar 

  7. Witecka J, Augusciak-Duma AM, Kruczek A, et al. Two novel COL1A1 mutations in patients with osteogenesis imperfecta (OI) affect the stability of the collagen type I triple-helix. J Appl Genet. 2008;49:283–95.

    Article  PubMed  Google Scholar 

  8. Makareeva E, Cabral WA, Marini JC, Leikin S. Molecular mechanism of α1(I)—osteogenesis imperfecta/Ehlers-Danlos Syndrome. J Biol Chem. 2006;281:6463–70.

    Article  PubMed  CAS  Google Scholar 

  9. Chevrel G, Schott AM, Fontanges E, et al. Effects of oral Alendronate on BMD in adult patients with osteogenesis imperfecta: a 3-year randomized placebo-controlled trial. J Bone Miner Res. 2006;21:300–6.

    Article  PubMed  CAS  Google Scholar 

  10. Van Dijk FS, Pals G, Van Rijn RR, Nikkels PG, Cobben JM. Classification of osteogenesis imperfecta revisited. Eur J Med Genet. 2010;53:1–5.

    Article  PubMed  Google Scholar 

  11. Barnes AM, Carter EM, Cabral WA, et al. Lack of cyclophilin B in osteogenesis imperfecta with normal collagen folding. N Engl J Med. 2010;362:521–8.

    Article  PubMed  CAS  Google Scholar 

  12. Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7:540–57.

    Article  PubMed  CAS  Google Scholar 

  13. Sillence DO, Senn A, Danks DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16:101–16.

    Article  PubMed  CAS  Google Scholar 

  14. Cabral WA, Chang W, Barnes AM, et al. Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet. 2007;39:359–65.

    Article  PubMed  CAS  Google Scholar 

  15. Paterson CR, McAllion S, Stellman JL. Osteogenesis imperfecta after the menopause. N Engl J Med. 1984;310:1694–6.

    Article  PubMed  CAS  Google Scholar 

  16. Wekre LL, Eriksen EF, Falch JA. Bone mass, bone markers and prevalence of fractures in adults with osteogenesis imperfecta. Arch Osteoporos. 2011;6:31–8.

    Article  PubMed  Google Scholar 

  17. Miller ME, Hangartner TN. Bone density measurements by computed tomography in osteogenesis imperfecta type I. Osteoporos Int. 1999;9:427–32.

    Article  PubMed  CAS  Google Scholar 

  18. Zebaze R, Ghasem-Zadeh A, Bohte A, et al. Intracortical remodelling and porosity in the distal radius and post-mortem femurs of women: a cross-sectional study. Lancet. 2010;375:1729–36.

    Article  PubMed  Google Scholar 

  19. Faulkner KG, Wacker WK, Barden HS, et al. Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos Int. 2006;17:593–9.

    Article  PubMed  CAS  Google Scholar 

  20. van Londen GJ, Perera S, Vujevich KT, Sereika SM, Bhattacharya R, Greenspan SL. The effect of risedronate on hip structural geometry in chemotherapy-induced postmenopausal women with or without use of aromatase inhibitors: a 2-year trial. Bone. 2010;46:655–9.

    Article  PubMed  Google Scholar 

  21. Khoo BC, Wilson SG, Worth GK, et al. A comparative study between corresponding structural geometric variables using 2 commonly implemented hip structural analysis algorithms applied to dual-energy X-ray absorptiometry images. J Clin Densitom. 2009;12:461–7.

    Article  PubMed  Google Scholar 

  22. Martin RB, Burr DB. Non-invasive measurements of long bone cross sectional moment of inertia by photon absorptiometry. J Biomech. 1984;17:195–201.

    Article  PubMed  CAS  Google Scholar 

  23. Bonnick SL. HSA: beyond BMD with DXA. Bone. 2007;41:S9–S12.

    PubMed  Google Scholar 

  24. Rauch F, Land C, Cornibert S, Schoenau E, Glorieux FH. High and low density in the same bone: a study on children and adolescents with mild osteogenesis imperfecta. Bone. 2005;37:634–41.

    Article  PubMed  Google Scholar 

  25. Land C, Rauch F, Munns CF, Sahebjam S, Glorieux FH. Vertebral morphometry in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate treatment. Bone. 2006;39:901–6.

    Article  PubMed  CAS  Google Scholar 

  26. Letocha AD, Cintas HL, Troendle JF, et al. Controlled trial of pamidronate in children with types III and IV osteogenesis imperfecta confirms vertebral gains but not short-term functional improvement. J Bone Miner Res. 2005;20:977–86.

    Article  PubMed  CAS  Google Scholar 

  27. Ishikawa S, Kumar SJ, Takahashi HE, Homma M. Vertebral body shape as a predictor of spinal deformity in osteogenesis imperfecta. J Bone Joint Surg. 1996;78:212–9.

    PubMed  CAS  Google Scholar 

  28. Weber M, Roschger P, Fratzl-Zelman N, et al. Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone. 2006;39:616–22.

    Article  PubMed  CAS  Google Scholar 

  29. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42:456–66.

    Article  PubMed  CAS  Google Scholar 

  30. Lindahl K, Barnes AM, Fratzl-Zelman N, et al. COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum Mutat. 2011;32:598–609.

    Article  PubMed  CAS  Google Scholar 

  31. Bradbury LA, Barlow S, Geoghegan F, et al. Risedronate in adults with osteogenesis imperfecta type I: increased bone mineral density and decreased bone turnover, but high fracture rate persists. Osteoporos Int. 2012;23:285–94.

    Article  PubMed  CAS  Google Scholar 

  32. Siu WS, Qin L, Leung KS. pQCT bone strength index may serve as a better predictor than bone mineral density for long bone breaking strength. J Bone Miner Metab. 2003;21:316–22.

    Article  PubMed  Google Scholar 

  33. Kozloff KM, Carden A, Bergwitz C, et al. Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptions to improve whole bone strength. J Bone Miner Res. 2004;19:614–22.

    Article  PubMed  Google Scholar 

  34. Alwis G, Karlsson C, Stenevi-Lundgren S, Rosengren BE, Karlsson MK. Femoral neck bone strength estimated by hip structural analysis (HSA) in Swedish Caucasians aged 6–90 years. Calcif Tissue Int. 2012;90:174–85.

    Article  PubMed  CAS  Google Scholar 

  35. Gnudi S, Sitta E, Fiumi N. Bone density and geometry in assessing hip fracture risk in postmenopausal women. Br J Radiol. 2007;80:893–7.

    Article  PubMed  CAS  Google Scholar 

  36. Szulc P, Duboeuf F, Schott AM, Dargent-Molina P, Meunier PJ, Delmas PD. Structural determinants of hip fracture in elderly women: re-analysis of the data from the EPIDOS study. Osteoporos Int. 2006;17:231–6.

    Article  PubMed  CAS  Google Scholar 

  37. Ahlborg HG, Nguyen ND, Nguyen TV, Center JR, Eisman JA. Contribution of hip strength indices to hip fracture risk in elderly men and women. J Bone Miner Res. 2005;20:1820–7.

    Article  PubMed  Google Scholar 

  38. Jamsa T, Jalovaara P, Peng Z, Vaananen K, Tuukkanen J. Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia. Bone. 1998;23:155–61.

    Article  PubMed  CAS  Google Scholar 

  39. Melton LJ, Beck TJ, Amin S, et al. Contributions of bone density and structure to fracture risk assessment in men and women. Osteoporos Int. 2005;16:460–7.

    Article  PubMed  Google Scholar 

  40. Prevrhal S, Shepherd JA, Faulkner KG, Gaither KW, Black DM, Lang TF. Comparison of DXA hip structural analysis with volumetric QCT. J Clin Densitom. 2008;11:232–6.

    Article  PubMed  Google Scholar 

  41. LaCroix AZ, Beck TJ, Cauley JA, et al. Hip structural geometry and incidence of hip fracture in postmenopausal women: what does it add to conventional bone mineral density? Osteoporos Int. 2010;21:919–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Kocijan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocijan, R., Muschitz, C., Fratzl-Zelman, N. et al. Femoral geometric parameters and BMD measurements by DXA in adult patients with different types of osteogenesis imperfecta. Skeletal Radiol 42, 187–194 (2013). https://doi.org/10.1007/s00256-012-1512-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-012-1512-4

Keywords

Navigation