Skip to main content

Advertisement

Log in

Dynamic contrast-enhanced MRI for monitoring bisphosphonate therapy in Paget’s disease of bone

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of this study was to evaluate changes in regional bone perfusion in Paget’s disease (PD) following bisphosphonate therapy. We used dynamic contrast-enhanced MRI (DCE-MRI) for assessment of bone perfusion and compared MRI findings with alkaline phosphatase (AP) as a serum marker of bone turnover.

Materials and methods

We examined 20 patients (8 women, 12 men, 66 ± 11 years) with symptomatic PD of the axial skeleton. Patients were selected for infusion therapy with the bisphosphonate pamidronate. The most affected bone of lumbar spine or pelvis was examined by DCE-MRI prior to therapy and after a 6-month follow-up. The contrast uptake was evaluated using a two-compartment model with the parameters amplitude A and exchange rate constant Kep. Color-coded parametric images were generated to visualize bone vascularization.

Results

After a 6-month follow-up there was a significant decrease in alkaline phosphatase and in DCE-MRI parameters A and Kep (p < 0.0001). Patients without previous bisphosphonate treatment showed a significantly greater decrease in alkaline phosphatase and Kep (p < 0.001).

Conclusion

DCE-MRI shows a significant reduction in regional bone perfusion in PD following parenteral bisphosphonate treatment. Reduction in bone perfusion is greater in bisphosphonate-naïve patients than in those who had been previously treated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Delmas PD, Meunier PJ. The management of Paget's disease of bone. N Engl J Med. 1997;336:558–66.

    Article  PubMed  CAS  Google Scholar 

  2. Roodman GD, Windle JJ. Paget disease of bone. J Clin Invest. 2005;115:200–8.

    PubMed  CAS  Google Scholar 

  3. Whyte MP. Clinical practice. Paget's disease of bone. N Engl J Med. 2006;355:593–600.

    Article  PubMed  CAS  Google Scholar 

  4. Brandi ML, Collin-Osdoby P. Vascular biology and the skeleton. J Bone Miner Res. 2006;21:183–92.

    Article  PubMed  CAS  Google Scholar 

  5. Libicher M, Kasperk C, Daniels M, Hosch W, Kauczor HU, Delorme S. Dynamic contrast-enhanced MRI in Paget's disease of bone—correlation of regional microcirculation and bone turnover. Eur Radiol. 2008;18:1005–11.

    Article  PubMed  CAS  Google Scholar 

  6. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science. 2000;289:1508–14.

    Article  PubMed  CAS  Google Scholar 

  7. Fournier P, Boissier S, Filleur S, Guglielmi J, Cabon F, Colombel M, et al. Bisphosphonates inhibit angiogenesis in vitro and testosterone-stimulated vascular regrowth in the ventral prostate in castrated rats. Cancer Res. 2002;62:6538–44.

    PubMed  CAS  Google Scholar 

  8. Brix G, Kiessling F, Lucht R, Darai S, Wasser K, Delorme S, et al. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med. 2004;52:420–9.

    Article  PubMed  Google Scholar 

  9. Brix G, Schreiber W, Hoffmann U, Guckel F, Hawighorst H, Knopp MV. Methodological approaches to quantitative evaluation of microcirculation in tissues with dynamic magnetic resonance tomography. Radiologe. 1997;37:470–80.

    Article  PubMed  CAS  Google Scholar 

  10. Hawighorst H, Libicher M, Knopp MV, Moehler T, Kauffmann GW, Kaick G. Evaluation of angiogenesis and perfusion of bone marrow lesions: role of semiquantitative and quantitative dynamic MRI. J Magn Reson Imaging. 1999;10:286–94.

    Article  PubMed  CAS  Google Scholar 

  11. Hillengass J, Wasser K, Delorme S, Kiessling F, Zechmann C, Benner A, et al. Lumbar bone marrow microcirculation measurements from dynamic contrast-enhanced magnetic resonance imaging is a predictor of event-free survival in progressive multiple myeloma. Clin Cancer Res. 2007;13:475–81.

    Article  PubMed  Google Scholar 

  12. Moehler TM, Hawighorst H, Neben K, Egerer G, Hillengass J, Max R, et al. Bone marrow microcirculation analysis in multiple myeloma by contrast-enhanced dynamic magnetic resonance imaging. Int J Cancer. 2001;93:862–8.

    Article  PubMed  CAS  Google Scholar 

  13. Nosas-Garcia S, Moehler T, Wasser K, Kiessling F, Bartl R, Zuna I, et al. Dynamic contrast-enhanced MRI for assessing the disease activity of multiple myeloma: a comparative study with histology and clinical markers. J Magn Reson Imaging. 2005;22:154–62.

    Article  PubMed  Google Scholar 

  14. Hoffmann U, Brix G, Knopp MV, Hess T, Lorenz WJ. Pharmacokinetic mapping of the breast: a new method for dynamic MR mammography. Magn Reson Med. 1995;33:506–14.

    Article  PubMed  CAS  Google Scholar 

  15. Hawighorst H, Knapstein PG, Weikel W, Knopp MV, Zuna I, Knof A, et al. Angiogenesis of uterine cervical carcinoma: characterization by pharmacokinetic magnetic resonance parameters and histological microvessel density with correlation to lymphatic involvement. Cancer Res. 1997;57:4777–86.

    PubMed  CAS  Google Scholar 

  16. Ziebart T, Pabst A, Klein MO, Kammerer P, Gauss L, Brullmann D, et al. Bisphosphonates: restrictions for vasculogenesis and angiogenesis: inhibition of cell function of endothelial progenitor cells and mature endothelial cells in vitro. Clin Oral Investig. 2011;15:105–11.

    Article  PubMed  Google Scholar 

  17. Stresing V, Fournier PG, Bellahcene A, Benzaid I, Monkkonen H, Colombel M, et al. Nitrogen-containing bisphosphonates can inhibit angiogenesis in vivo without the involvement of farnesyl pyrophosphate synthase. Bone. 2011;48:259–66.

    Article  PubMed  CAS  Google Scholar 

  18. Santini D, Vincenzi B, Avvisati G, Dicuonzo G, Battistoni F, Gavasci M, et al. Pamidronate induces modifications of circulating angiogenetic factors in cancer patients. Clin Cancer Res. 2002;8:1080–4.

    PubMed  CAS  Google Scholar 

  19. Rendina D, Mossetti G, Viceconti R, Sorrentino M, Nunziata V. Risedronate and pamidronate treatment in the clinical management of patients with severe Paget's disease of bone and acquired resistance to bisphosphonates. Calcif Tissue Int. 2004;75:189–96.

    Article  PubMed  CAS  Google Scholar 

  20. Walsh JP, Ward LC, Stewart GO, Will RK, Criddle RA, Prince RL, et al. A randomized clinical trial comparing oral alendronate and intravenous pamidronate for the treatment of Paget's disease of bone. Bone. 2004;34:747–54.

    Article  PubMed  CAS  Google Scholar 

  21. Patel S, Pearson D, Hosking DJ. Quantitative bone scintigraphy in the management of monostotic Paget's disease of bone. Arthritis Rheum. 1995;38:1506–12.

    Article  PubMed  CAS  Google Scholar 

  22. Ryan PJ, Gibson T, Fogelman I. Bone scintigraphy following intravenous pamidronate for Paget's disease of bone. J Nucl Med. 1992;33:1589–93.

    PubMed  CAS  Google Scholar 

  23. Pons F, Alvarez L, Peris P, Guanabens N, Vidal-Sicart S, Monegal A, et al. Quantitative evaluation of bone scintigraphy in the assessment of Paget's disease activity. Nucl Med Commun. 1999;20:525–8.

    Article  PubMed  CAS  Google Scholar 

  24. Kobayashi H, Shigeno C, Sakahara H, Yamamoto T, Hosono M, Fujimoto R, et al. Three phase 99Tcm (V)DMSA scintigraphy in Paget's disease: an indicator of pamidronate effect. Br J Radiol. 1997;70:1056–9.

    PubMed  CAS  Google Scholar 

  25. Cook GJ, Blake GM, Marsden PK, Cronin B, Fogelman I. Quantification of skeletal kinetic indices in Paget's disease using dynamic 18F-fluoride positron emission tomography. J Bone Miner Res. 2002;17:854–9.

    Article  PubMed  CAS  Google Scholar 

  26. Frost ML, Cook GJ, Blake GM, Marsden PK, Benatar NA, Fogelman I. A prospective study of risedronate on regional bone metabolism and blood flow at the lumbar spine measured by 18F-fluoride positron emission tomography. J Bone Miner Res. 2003;18:2215–22.

    Article  PubMed  CAS  Google Scholar 

  27. Merlotti D, Gennari L, Martini G, Valleggi F, De Paola V, Avanzati A, et al. Comparison of different intravenous bisphosphonate regimens for Paget's disease of bone. J Bone Miner Res. 2007;22:1510–7.

    Article  PubMed  CAS  Google Scholar 

  28. Backman U, Svensson A, Christofferson RH, Azarbayjani F. The bisphosphonate, zoledronic acid reduces experimental neuroblastoma growth by interfering with tumor angiogenesis. Anticancer Res. 2008;28:1551–7.

    PubMed  Google Scholar 

  29. Zampa V, Bargellini I, Rizzo L, Turini F, Ortori S, Piaggesi A, et al. Role of dynamic MRI in the follow-up of acute Charcot foot in patients with diabetes mellitus. Skeletal Radiol. 2011;40:991–9.

    Article  PubMed  Google Scholar 

  30. Navalho M, Resende C, Rodrigues AM, Gaspar A, Fonseca JE, Canhao H, et al. Dynamic contrast-enhanced 3-T magnetic resonance imaging: a method for quantifying disease activity in early polyarthritis. Skeletal Radiol. 2012;41:51–9.

    Article  PubMed  Google Scholar 

  31. Hodgson R, Grainger A, O'Connor P, Barnes T, Connolly S, Moots R. Dynamic contrast enhanced MRI of bone marrow oedema in rheumatoid arthritis. Ann Rheum Dis. 2008;67:270–2.

    Article  PubMed  CAS  Google Scholar 

  32. Hodgson RJ, Barnes T, Connolly S, Eyes B, Campbell RS, Moots R. Changes underlying the dynamic contrast-enhanced MRI response to treatment in rheumatoid arthritis. Skeletal Radiol. 2008;37:201–7.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Libicher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Libicher, M., Kasperk, C., Daniels-Wredenhagen, M. et al. Dynamic contrast-enhanced MRI for monitoring bisphosphonate therapy in Paget’s disease of bone. Skeletal Radiol 42, 225–230 (2013). https://doi.org/10.1007/s00256-012-1423-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-012-1423-4

Keywords

Navigation