Skip to main content

Advertisement

Log in

Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To prospectively compare the diagnostic accuracy of diffusion-weighted whole body imaging with background whole body signal suppression (DWIBS) with skeletal scintigraphy for the diagnosis and differentiation of skeletal lesions in patients suffering from prostate or breast cancer.

Material and Methods

A diagnostic cohort of 36 patients was included in skeletal scintigraphy and 1.5 T DWIBS MRI. Based on morphology and signal intensity patterns, two readers each identified and classified independently, under blinded conditions, all lesions into three groups: (1) malignant, (2) unclear if malignant or benign and (3) benign. Finally, for the definition of the gold standard all available imaging techniques and follow-up over a minimum of 6 months were considered.

Results

Overall, 45 circumscribed bone metastases and 107 benign lesions were found. DWIBS performed significantly better in detecting malignant skeletal lesions in patients with more than 10 lesions (sensitivity: 0.97/0.91) compared to skeletal scintigraphy (sensitivity: 0.48/0.42). No statistical difference could be found between DWIBS (0.58/0.33) and skeletal scintigraphy (0.67/0.58) in the sensitivity values for malignant skeletal lesions in patients with less than 5 lesions. For benign lesions, scintigraphy scored best with a sensitivity of 0.93/0.87 compared to 0.20/0.13 for DWIBS. Interobserver agreement with Cohen’s kappa coefficient was calculated as 0.784 in the case of scintigraphy and 0.663 for DWIBS.

Conclusion

With respect to staging, in prostate and breast carcinoma, the DWIBS technique is not superior to skeletal scintigraphy, but ranks equally. However, in the cases with many bone lesions, markedly more metastases could be discovered using the DWIBS technique than skeletal scintigraphy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Huisman TA. Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol. 2003;13:2283–97.

    Article  PubMed  Google Scholar 

  2. Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188:1622–35.

    Article  PubMed  Google Scholar 

  3. Mürtz P, Krautmacher C, Träber F, et al. Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 Tesla. Eur Radiol. 2007;17:3031–37.

    Article  PubMed  Google Scholar 

  4. Coleman RE. Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res. 2006;12:6243–9.

    Article  Google Scholar 

  5. Tateishi U, Gamez C, Dawood S, et al. Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PET/CT. Radiology. 2008;247:189–96.

    Article  PubMed  Google Scholar 

  6. Miller TT. Bone tumors and tumorlike conditions: analysis with conventional radiography. Radiology. 2008;246:662–74.

    Article  PubMed  Google Scholar 

  7. McNeil BJ. Rationale for the use of bone scans in selected metastatic and primary bone tumors. Semin Nucl Med. 1978;8:336–4.

    Article  CAS  PubMed  Google Scholar 

  8. Nakanishi K, Kobayashi M, Nakaguchi K, et al. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci. 2007;6:147–55.

    Article  PubMed  Google Scholar 

  9. Ghanem N, Altehoefer C, Kelly T, et al. Whole-body MRI in comparison to skeletal scintigraphy in detection of skeletal metastases in patients with solid tumors. In Vivo. 2006;20:173–82.

    CAS  PubMed  Google Scholar 

  10. Lauenstein TC, Freudenberg LS, Goehde SC, et al. Whole-body MRI using a rolling table platform for the detection of bone metastases. Eur Radiol. 2002;12:2091–9.

    PubMed  Google Scholar 

  11. Altehoefer C, Ghanem N, Högerle S, et al. Comparative detectability of bone metastases and impact on therapy of magnetic resonance imaging and bone scintigraphy in patients with breast cancer. Eur J Radiol. 2001;40(1):16–23.

    Article  CAS  PubMed  Google Scholar 

  12. Baur A, Stäbler A, Brüning R, et al. Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology. 1998;207:349–56.

    CAS  PubMed  Google Scholar 

  13. Baur A, Reiser MF. Diffusion-weighted imaging of the musculoskeletal system in humans. Skeletal Radiol. 2000;29:555–62.

    Article  CAS  PubMed  Google Scholar 

  14. Moon WJ, Lee MH, Chung EC. Diffusion-weighted imaging with sensitivity encoding (SENSE) for detecting cranial bone marrow metastases: comparison with T1-weighted images. Korean J Radiol. 2007;8:185–91.

    Article  PubMed  Google Scholar 

  15. Baur A, Huber A, Ertl-Wagner B, et al. Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. AJNR Am J Neuroradiol. 2001;22:366–72.

    CAS  PubMed  Google Scholar 

  16. Takahara T, Imai Y, Yamashita T, et al. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med. 2004;22:275–82.

    PubMed  Google Scholar 

  17. Haubold-Reuter BG, Duewell S, Schilcher BR, et al. The value of bone scintigraphy, bone marrow scintigraphy and fast spin-echo magnetic resonance imaging in staging of patients with malignant solid tumours: a prospective study. Eur J Nucl Med. 1993;20:1063–9.

    Article  CAS  PubMed  Google Scholar 

  18. Lauenstein TC, Goehde SC, Herborn CU, et al. Three-dimensional volumetric interpolated breath-hold MR imaging for whole-body tumor staging in less than 15 minutes: a feasibility study. AJR Am J Roentgenol. 2002;179:445–9.

    PubMed  Google Scholar 

  19. Ketelsen D, Röthke M, Aschoff P et al. Detection of bone metastasis of prostate cancer - comparison of whole-body MRI and bone scintigraphy] Rofo. 2008 Aug;180(8):746-52. (Epub 2008 May 29)

  20. Even-Sapir E, Metser U, Mishani E, et al. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006 Feb;47(2):287–97.

  21. Tamada T, Nagai K, Iizuka M et al. Comparison of whole-body MR imaging and bone scintigraphy in the detection of bone metastases from breast cancer] Nippon Igaku Hoshasen Gakkai Zasshi. 2000 Apr;60(5):249-54

  22. Woolfenden JM, Pitt MJ, Durie BG, et al. Comparison of bone scintigraphy and radiography in multiple myeloma. Radiology. 1980;134:723–8.

    CAS  PubMed  Google Scholar 

  23. Landgren O, Axdorph U, Jacobsson H, et al. Routine bone scintigraphy is of limited value in the clinical assessment of untreated patients with Hodgkin’s disease. Med Oncol. 2000;17:174–8.

    Article  CAS  PubMed  Google Scholar 

  24. Baur A, Huber A, Dürr HR, et al. Differentiation of benign osteoporotic and neoplastic vertebral compression fractures with a diffusion-weighted, steady-state free precession sequence. Rofo. 2002;174:70–5.

    CAS  PubMed  Google Scholar 

  25. Komori T, Narabayashi I, Matsumura K, et al. 2-[Fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions: initial experience. Ann Nucl Med. 2007;21:209–15.

    Article  PubMed  Google Scholar 

  26. Luboldt W, Kuefer R, Blumstein N, et al. Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology. 2008;249:1017–25.

    Article  PubMed  Google Scholar 

  27. Ohno Y, Koyama H, Onishi Y, et al. Non-small cell lung cancer: whole-body MR examination for M-stage assessment—utility for whole-body diffusion-weighted imaging compared with integrated FDG PET/CT. Radiology. 2008;248:643–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Gutzeit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutzeit, A., Doert, A., Froehlich, J.M. et al. Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol 39, 333–343 (2010). https://doi.org/10.1007/s00256-009-0789-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-009-0789-4

Keywords

Navigation