Skip to main content
Log in

Can magnetic resonance imaging accurately predict concordant pain provocation during provocative disc injection?

  • Scientific Article
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

An Erratum to this article was published on 13 November 2009

This article has been updated

Abstract

Objective

To correlate magnetic resonance (MR) image findings with pain response by provocation discography in patients with discogenic low back pain, with an emphasis on the combination analysis of a high intensity zone (HIZ) and disc contour abnormalities.

Materials and methods

Sixty-two patients (aged 17–68 years) with axial low back pain that was likely to be disc related underwent lumbar discography (178 discs tested). The MR images were evaluated for disc degeneration, disc contour abnormalities, HIZ, and endplate abnormalities. Based on the combination of an HIZ and disc contour abnormalities, four classes were determined: (1) normal or bulging disc without HIZ; (2) normal or bulging disc with HIZ; (3) disc protrusion without HIZ; (4) disc protrusion with HIZ. These MR image findings and a new combined MR classification were analyzed in the base of concordant pain determined by discography.

Results

Disc protrusion with HIZ [sensitivity 45.5%; specificity 97.8%; positive predictive value (PPV), 87.0%] correlated significantly with concordant pain provocation (P < 0.01). A normal or bulging disc with HIZ was not associated with reproduction of pain. Disc degeneration (sensitivity 95.4%; specificity 38.8%; PPV 33.9%), disc protrusion (sensitivity 68.2%; specificity 80.6%; PPV 53.6%), and HIZ (sensitivity 56.8%; specificity 83.6%; PPV 53.2%) were not helpful in the identification of a disc with concordant pain.

Conclusion

The proposed MR classification is useful to predict a disc with concordant pain. Disc protrusion with HIZ on MR imaging predicted positive discography in patients with discogenic low back pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 13 November 2009

    Erratum to: Skeletal Radiol

References

  1. Yu S, Haughton VM, Sether LA, Ho KC, Wagner M. Criteria for classifying normal and degenerated lumbar intervertebral disks. Radiology 1989; 170: 523–526.

    Article  CAS  Google Scholar 

  2. Yu SW, Haughton VM, Sether LA, Wagner M. Anulus fibrosus in bulging intervertebral disks. Radiology 1988; 169: 761–763.

    Article  CAS  Google Scholar 

  3. Yu SW, Haughton VM, Sether LA, Wagner M. Comparison of MR and diskography in detecting radial tears of the anulus: a postmortem study. AJNR Am J Neuroradiol 1989; 10: 1077–1081.

    CAS  PubMed  Google Scholar 

  4. Yu SW, Sether LA, Ho PS, Wagner M, Haughton VM. Tears of the anulus fibrosus: correlation between MR and pathologic findings in cadavers. AJNR Am J Neuroradiol 1988; 9: 367–370.

    CAS  PubMed  Google Scholar 

  5. Boden SD, Davis DO, Dina TS, Patronas NJ, Wiesel SW. Abnormal magnetic-resonance scans of the lumbar spine in asymptomatic subjects. A prospective investigation. J Bone Joint Surg Am 1990; 72: 403–408.

    Article  CAS  Google Scholar 

  6. Jensen MC, Brant-Zawadzki MN, Obuchowski N, Modic MT, Malkasian D, Ross JS. Magnetic resonance imaging of the lumbar spine in people without back pain. N Engl J Med 1994; 331: 69–73.

    Article  CAS  Google Scholar 

  7. Bogduk N, Modic MT. Lumbar discography. Spine 1996; 21: 402–404.

    Article  CAS  Google Scholar 

  8. Collins CD, Stack JP, O’Connell DJ, et al. The role of discography in lumbar disc disease: a comparative study of magnetic resonance imaging and discography. Clin Radiol 1990; 42: 252–257.

    Article  CAS  Google Scholar 

  9. Aprill C, Bogduk N. High-intensity zone: a diagnostic sign of painful lumbar disc on magnetic resonance imaging. Br J Radiol 1992; 65: 361–369.

    Article  CAS  Google Scholar 

  10. Mooney V. Presidential address. International society for the study of the lumbar spine. Dallas, 1986. Where is the pain coming from? Spine 1987; 12: 754–759.

    Article  CAS  Google Scholar 

  11. Schellhas KP, Pollei SR, Gundry CR, Heithoff KB. Lumbar disc high-intensity zone. Correlation of magnetic resonance imaging and discography. Spine 1996; 21: 79–86.

    Article  CAS  Google Scholar 

  12. Vanharanta H, Sachs BL, Spivey MA, et al. The relationship of pain provocation to lumbar disc deterioration as seen by CT/discography. Spine 1987; 12: 295–298.

    Article  CAS  Google Scholar 

  13. Burke JG, Watson RW, McCormack D, Dowling FE, Walsh MG, Fitzpatrick JM. Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J Bone Joint Surg Br 2002; 84: 196–201.

    Article  CAS  Google Scholar 

  14. Coppes MH, Marani E, Thomeer RT, Groen GJ. Innervation of “painful” lumbar discs. Spine 1997; 22: 2342–2349. Discussion 9–50.

    Article  CAS  Google Scholar 

  15. Freemont AJ, Peacock TE, Goupille P, Hoyland JA, O'Brien J, Jayson MI. Nerve ingrowth into diseased intervertebral disc in chronic back pain. Lancet 1997; 350: 178–181.

    Article  CAS  Google Scholar 

  16. Johnson WE, Evans H, Menage J, Eisenstein SM, El Haj A, Roberts S. Immunohistochemical detection of Schwann cells in innervated and vascularized human intervertebral discs. Spine 2001; 26: 2550–2557.

    Article  CAS  Google Scholar 

  17. Nerlich AG, Weiler C, Zipperer J, Narozny M, Boos N. Immunolocalization of phagocytic cells in normal and degenerated intervertebral discs. Spine 2002; 27: 2484–2490.

    Article  Google Scholar 

  18. Peng B, Wu W, Hou S, Li P, Zhang C, Yang Y. The pathogenesis of discogenic low back pain. J Bone Joint Surg Br 2005; 87: 62–67.

    Article  CAS  Google Scholar 

  19. Ross JS, Modic MT, Masaryk TJ. Tears of the anulus fibrosus: assessment with Gd-DTPA-enhanced MR imaging. AJR Am J Roentgenol 1990; 154: 159–162.

    Article  CAS  Google Scholar 

  20. Hirsch C, Ingelmark BE, Miller M. The anatomical basis for low back pain. Studies on the presence of sensory nerve endings in ligamentous, capsular and intervertebral disc structures in the human lumbar spine. Acta Orthop Scand 1963 ;33: 1–17.

    Article  CAS  Google Scholar 

  21. Ricketson R, Simmons JW, Hauser BO. The prolapsed intervertebral disc. The high-intensity zone with discography correlation. Spine 1996; 21: 2758–2762.

    Article  CAS  Google Scholar 

  22. Schwarzer AC, Aprill CN, Derby R, Fortin J, Kine G, Bogduk N. The prevalence and clinical features of internal disc disruption in patients with chronic low back pain. Spine 1995; 20: 1878–1883.

    Article  CAS  Google Scholar 

  23. Smith BM, Hurwitz EL, Solsberg D, et al. Interobserver reliability of detecting lumbar intervertebral disc high-intensity zone on magnetic resonance imaging and association of high-intensity zone with pain and anular disruption. Spine 1998; 23: 2074–2080.

    Article  CAS  Google Scholar 

  24. Yoshida H, Fujiwara A, Tamai K, Kobayashi N, Saiki K, Saotome K. Diagnosis of symptomatic disc by magnetic resonance imaging: T2-weighted and gadolinium-DTPA-enhanced T1-weighted magnetic resonance imaging. J Spinal Disord Tech 2002; 15: 193–198.

    Article  Google Scholar 

  25. Ito M, Incorvaia KM, Yu SF, Fredrickson BE, Yuan HA, Rosenbaum AE. Predictive signs of discogenic lumbar pain on magnetic resonance imaging with discography correlation. Spine 1998; 23: 1252–1258. Discussion 9–60.

    Article  CAS  Google Scholar 

  26. Lam KS, Carlin D, Mulholland RC. Lumbar disc high-intensity zone: the value and significance of provocative discography in the determination of the discogenic pain source. Eur Spine J 2000; 9: 36–41.

    Article  CAS  Google Scholar 

  27. Saifuddin A, Braithwaite I, White J, Taylor BA, Renton P. The value of lumbar spine magnetic resonance imaging in the demonstration of anular tears. Spine 1998; 23: 453–457.

    Article  CAS  Google Scholar 

  28. Fardon DF, Milette PC. Nomenclature and classification of lumbar disc pathology. Recommendations of the Combined Task Forces of the North American Spine Society, American Society of Spine Radiology, and American Society of Neuroradiology. Spine 2001; 26: E93–E113.

    Article  CAS  Google Scholar 

  29. Pfirrmann CW, Metzdorf A, Zanetti M, Hodler J, Boos N. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine 2001; 26: 1873–1878.

    Article  CAS  Google Scholar 

  30. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 1988; 166: 193–199.

    Article  CAS  Google Scholar 

  31. Adams MA, Dolan P, Hutton WC. The stage of disc degeneration as revealed by discograms. J Bone Joint Surg Br 1986; 68: 36–41.

    Article  CAS  Google Scholar 

  32. Cicchetti DV, Sparrow SS. Developing criteria for establishing interrator reliability of specific items: application to assessment of adaptive behavior. Am J Ment Defic 1981; 86: 127–137.

    CAS  PubMed  Google Scholar 

  33. Crock HV. Internal disc disruption. A challenge to disc prolapse fifty years on. Spine 1986; 11: 650–653.

    Article  CAS  Google Scholar 

  34. Modic MT, Masaryk TJ, Ross JS, Carter JR. Imaging of degenerative disk disease. Radiology 1988; 168: 177–186.

    Article  CAS  Google Scholar 

  35. Moneta GB, Videman T, Kaivanto K, et al. Reported pain during lumbar discography as a function of anular ruptures and disc degeneration. A re-analysis of 833 discograms. Spine 1994; 19: 1968–1974.

    Article  CAS  Google Scholar 

  36. Boos N, Rieder R, Schade V, Spratt KF, Semmer N, Aebi M. 1995 Volvo Award in clinical sciences. The diagnostic accuracy of magnetic resonance imaging, work perception, and psychosocial factors in identifying symptomatic disc herniations. Spine 1995; 20: 2613–2625.

    Article  CAS  Google Scholar 

  37. Stadnik TW, Lee RR, Coen HL, Neirynck EC, Buisseret TS, Osteaux MJ. Annular tears and disk herniation: prevalence and contrast enhancement on MR images in the absence of low back pain or sciatica. Radiology 1998; 206: 49–55.

    Article  CAS  Google Scholar 

  38. Weishaupt D, Zanetti M, Hodler J, Boos N. MR imaging of the lumbar spine: prevalence of intervertebral disk extrusion and sequestration, nerve root compression, end plate abnormalities, and osteoarthritis of the facet joints in asymptomatic volunteers. Radiology 1998; 209: 661–666.

    Article  CAS  Google Scholar 

  39. Guyer RD, Ohnmeiss DD. Lumbar discography. Position statement from the North American Spine Society Diagnostic and Therapeutic Committee. Spine 1995; 20: 2048–2059.

    Article  CAS  Google Scholar 

  40. Carragee EJ, Paragioudakis SJ, Khurana S. 2000 Volvo Award winner in clinical studies: Lumbar high-intensity zone and discography in subjects without low back problems. Spine 2000; 25: 2987–2992.

    Article  CAS  Google Scholar 

  41. Saal JS. General principles of diagnostic testing as related to painful lumbar spine disorders: a critical appraisal of current diagnostic techniques. Spine 2002; 27: 2538–2545. Discussion 46.

    Article  Google Scholar 

  42. Bogduk N. Point of view: predictive signs of discogenic lumbar pain on magnetic resonance imaging with discography correlation. Spine 1998; 23: 1259–1260.

    Article  Google Scholar 

  43. Milette PC, Fontaine S, Lepanto L, Cardinal E, Breton G. Differentiating lumbar disc protrusions, disc bulges, and discs with normal contour but abnormal signal intensity. Magnetic resonance imaging with discographic correlations. Spine 1999; 24: 44–53.

    Article  CAS  Google Scholar 

  44. Horton WC, Daftari TK. Which disc as visualized by magnetic resonance imaging is actually a source of pain? A correlation between magnetic resonance imaging and discography. Spine 1992; 17: S164–S171.

    Article  CAS  Google Scholar 

  45. Osti OL, Fraser RD. MRI and discography of annular tears and intervertebral disc degeneration. A prospective clinical comparison. J Bone Joint Surg Br 1992; 74: 431–435.

    Article  CAS  Google Scholar 

  46. Weishaupt D, Zanetti M, Hodler J, et al. Painful lumbar disk derangement: relevance of endplate abnormalities at MR imaging. Radiology 2001; 218: 420–427.

    Article  CAS  Google Scholar 

  47. Lim CH, Jee WH, Son BC, Kim DH, Ha KY, Park CK. Discogenic lumbar pain: association with MR imaging and CT discography. Eur J Radiol 2005; 54: 431–437.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, C.H., Kim, Y.H., Lee, SH. et al. Can magnetic resonance imaging accurately predict concordant pain provocation during provocative disc injection?. Skeletal Radiol 38, 877–885 (2009). https://doi.org/10.1007/s00256-009-0709-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00256-009-0709-7

Keywords

Navigation