Skip to main content
Log in

Quantitative thoracic CT techniques in adults: can they be applied in the pediatric population?

  • Minisymposium
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

With the rapid evolution of the multidetector row CT technique, quantitative CT has started to be used in clinical studies for revealing a heterogeneous entity of airflow limitation in chronic obstructive pulmonary disease that is caused by a combination of lung parenchymal destruction and remodeling of the small airways in adults. There is growing evidence of a good correlation between quantitative CT findings and pathological findings, pulmonary function test results and other clinical parameters. This article provides an overview of current quantitative thoracic CT techniques used in adults, and how to translate these CT techniques to the pediatric population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Heart, Lung, and Blood Institute (1985) The definition of emphysema. Report of a National Heart, Lung, and Blood Institute, Division of Lung Diseases workshop. Am Rev Respir Dis 132:182–185

    Google Scholar 

  2. Goddard PR, Nicholson EM, Laszlo G et al (1982) Computed tomography in pulmonary emphysema. Clin Radiol 33:379–387

    Article  PubMed  CAS  Google Scholar 

  3. Muller NL, Staples CA, Miller RR et al (1988) “Density mask”. An objective method to quantitate emphysema using computed tomography. Chest 94:782–787

    Article  PubMed  CAS  Google Scholar 

  4. Madani A, Van Muylem A, Gevenois PA (2010) Pulmonary emphysema: effect of lung volume on objective quantification at thin-section CT. Radiology 257:260–268

    Article  PubMed  Google Scholar 

  5. Bakker ME, Stolk J, Putter H et al (2005) Variability in densitometric assessment of pulmonary emphysema with computed tomography. Invest Radiol 40:777–783

    Article  PubMed  Google Scholar 

  6. Gierada DS, Bierhals AJ, Choong CK et al (2010) Effects of CT section thickness and reconstruction kernel on emphysema quantification relationship to the magnitude of the CT emphysema index. Acad Radiol 17:146–156

    Article  PubMed  Google Scholar 

  7. Madani A, De Maertelaer V, Zanen J et al (2007) Pulmonary emphysema: radiation dose and section thickness at multidetector CT quantification – comparison with macroscopic and microscopic morphometry. Radiology 243:250–257

    Article  PubMed  Google Scholar 

  8. Salito C, Woods JC, Aliverti A (2011) Influence of CT reconstruction settings on extremely low attenuation values for specific gas volume calculation in severe emphysema. Acad Radiol 18:1277–1284

    Article  PubMed  Google Scholar 

  9. Hochhegger B, Irion KL, Marchiori E et al (2011) Reconstruction algorithms influence the follow-up variability in the longitudinal CT emphysema index measurements. Korean J Radiol 12:169–175

    Article  PubMed  Google Scholar 

  10. Hochhegger B, Irion KL, Marchiori E et al (2010) Reconstruction algorithms and their influence in emphysema CT measurements. Acad Radiol 17:674

    Article  PubMed  Google Scholar 

  11. Boedeker KL, McNitt-Gray MF, Rogers SR et al (2004) Emphysema: effect of reconstruction algorithm on CT imaging measures. Radiology 232:295–301

    Article  PubMed  Google Scholar 

  12. Stoel BC, Bakker ME, Stolk J et al (2004) Comparison of the sensitivities of 5 different computed tomography scanners for the assessment of the progression of pulmonary emphysema: a phantom study. Invest Radiol 39:1–7

    Article  PubMed  Google Scholar 

  13. Gierada DS, Pilgram TK, Whiting BR et al (2007) Comparison of standard- and low-radiation-dose CT for quantification of emphysema. AJR 188:42–47

    Article  PubMed  Google Scholar 

  14. Yuan R, Mayo JR, Hogg JC et al (2007) The effects of radiation dose and CT manufacturer on measurements of lung densitometry. Chest 132:617–623

    Article  PubMed  Google Scholar 

  15. Knudson RJ, Standen JR, Kaltenborn WT et al (1991) Expiratory computed tomography for assessment of suspected pulmonary emphysema. Chest 99:1357–1366

    Article  PubMed  CAS  Google Scholar 

  16. Arakawa A, Yamashita Y, Nakayama Y et al (2001) Assessment of lung volumes in pulmonary emphysema using multidetector helical CT: comparison with pulmonary function tests. Comput Med Imaging Graph 25:399–404

    Article  PubMed  CAS  Google Scholar 

  17. Mergo PJ, Williams WF, Gonzalez-Rothi R et al (1998) Three-dimensional volumetric assessment of abnormally low attenuation of the lung from routine helical CT: inspiratory and expiratory quantification. AJR 170:1355–1360

    PubMed  CAS  Google Scholar 

  18. Gevenois PA, De Vuyst P, de Maertelaer V et al (1996) Comparison of computed density and microscopic morphometry in pulmonary emphysema. Am J Respir Crit Care Med 154:187–192

    PubMed  CAS  Google Scholar 

  19. Moroni C, Mascalchi M, Camiciottoli G et al (2003) Comparison of spirometric-gated and -ungated HRCT in COPD. J Comput Assist Tomogr 27:375–379

    Article  PubMed  Google Scholar 

  20. Gierada DS, Yusen RD, Pilgram TK et al (2001) Repeatability of quantitative CT indexes of emphysema in patients evaluated for lung volume reduction surgery. Radiology 220:448–454

    PubMed  CAS  Google Scholar 

  21. McGregor A, Roberts HC, Dong Z et al (2010) Repeated low-dose computed tomography in current and former smokers for quantification of emphysema. J Comput Assist Tomogr 34:933–938

    Article  PubMed  Google Scholar 

  22. Bastarrika G, Wisnivesky JP, Pueyo JC et al (2009) Low-dose volumetric computed tomography for quantification of emphysema in asymptomatic smokers participating in an early lung cancer detection trial. J Thorac Imaging 24:206–211

    Article  PubMed  Google Scholar 

  23. Zompatori M, Fasano L, Mazzoli M et al (2002) Spiral CT evaluation of pulmonary emphysema using a low-dose technique. Radiol Med 104:13–24

    PubMed  CAS  Google Scholar 

  24. Stolk J, Dirksen A, van der Lugt AA et al (2001) Repeatability of lung density measurements with low-dose computed tomography in subjects with alpha-1-antitrypsin deficiency-associated emphysema. Invest Radiol 36:648–651

    Article  PubMed  CAS  Google Scholar 

  25. Koyama H, Ohno Y, Yamazaki Y et al (2010) Quantitative and qualitative assessments of lung destruction and pulmonary functional loss from reduced-dose thin-section CT in pulmonary emphysema patients. Acad Radiol 17:163–168

    Article  PubMed  Google Scholar 

  26. Hogg JC, Macklem PT, Thurlbeck WM (1968) Site and nature of airway obstruction in chronic obstructive lung disease. N Engl J Med 278:1355–1360

    Article  PubMed  CAS  Google Scholar 

  27. Regan EA, Hokanson JE, Murphy JR et al (2010) Genetic epidemiology of COPD (COPDGene) study design. COPD 7:32–43

    Article  PubMed  Google Scholar 

  28. Lucidarme O, Coche E, Cluzel P et al (1998) Expiratory CT scans for chronic airway disease: correlation with pulmonary function test results. AJR 170:301–307

    PubMed  CAS  Google Scholar 

  29. Kauczor HU, Hast J, Heussel CP et al (2002) CT attenuation of paired HRCT scans obtained at full inspiratory/expiratory position: comparison with pulmonary function tests. Eur Radiol 12:2757–2763

    PubMed  Google Scholar 

  30. Torigian DA, Gefter WB, Affuso JD et al (2007) Application of an optical flow method to inspiratory and expiratory lung MDCT to assess regional air trapping: a feasibility study. AJR 188:W276–280

    Article  PubMed  Google Scholar 

  31. Aziz ZA, Wells AU, Desai SR et al (2005) Functional impairment in emphysema: contribution of airway abnormalities and distribution of parenchymal disease. AJR 185:1509–1515

    Article  PubMed  Google Scholar 

  32. Patel BD, Coxson HO, Pillai SG et al (2008) Airway wall thickening and emphysema show independent familial aggregation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 178:500–505

    Article  PubMed  Google Scholar 

  33. Nakano Y, Muro S, Sakai H et al (2000) Computed tomographic measurements of airway dimensions and emphysema in smokers. Correlation with lung function. Am J Respir Crit Care Med 162:1102–1108

    PubMed  CAS  Google Scholar 

  34. Hasegawa M, Nasuhara Y, Onodera Y et al (2006) Airflow limitation and airway dimensions in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173:1309–1315

    Article  PubMed  Google Scholar 

  35. Matsuoka S, Kurihara Y, Yagihashi K et al (2008) Airway dimensions at inspiratory and expiratory multisection CT in chronic obstructive pulmonary disease: correlation with airflow limitation. Radiology 248:1042–1049

    Article  PubMed  Google Scholar 

  36. Nakano Y, Wong JC, de Jong PA et al (2005) The prediction of small airway dimensions using computed tomography. Am J Respir Crit Care Med 171:142–146

    Article  PubMed  Google Scholar 

  37. de Jong PA, Dodd JD, Coxson HO et al (2006) Bronchiolitis obliterans following lung transplantation: early detection using computed tomographic scanning. Thorax 61:799–804

    Article  PubMed  Google Scholar 

  38. Bhalla M, Turcios N, Aponte V et al (1991) Cystic fibrosis: scoring system with thin-section CT. Radiology 179:783–788

    PubMed  CAS  Google Scholar 

  39. Goo HW, Yand DH, Hong SJ et al (2010) Xenon ventilation CT using dual-source and dual-energy technique in children with bronchiolitis obliterans: correlation of xenon and CT density values with pulmonary function test results. Pediatr Radiol 40:1490–1497

    Article  PubMed  Google Scholar 

  40. Kroft LJ, Roelofs JJ, Geleijns J (2010) Scan time and patient dose for thoracic imaging in neonates and small children using axial volumetric 320-detector row CT compared to helical 64-, 32-, and 16-detector row CT acquisitions. Pediatr Radiol 40:294–300

    Article  PubMed  Google Scholar 

  41. Lell MM, May M, Deak P et al (2011) High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Invest Radiol 46:116–123

    Article  PubMed  Google Scholar 

  42. Goo HW (2010) State-of-the-art CT imaging techniques for congenital heart disease. Korean J Radiol 11:4–18

    Article  PubMed  Google Scholar 

  43. Long FR, Williams RS, Adler BH et al (2005) Comparison of quiet breathing and controlled ventilation in the high-resolution CT assessment of airway disease in infants with cystic fibrosis. Pediatr Radiol 35:1075–1080

    Article  PubMed  Google Scholar 

  44. Mueller KS, Long FR, Flucke RL et al (2010) Volume-monitored chest CT: a simplified method for obtaining motion-free images near full inspiratory and end expiratory lung volumes. Pediatr Radiol 40:1663–1669

    Article  PubMed  Google Scholar 

  45. Goo HW, Kim HJ (2006) Detection of air trapping on inspiratory and expiratory phase images obtained by 0.3-second cine CT in the lungs of free-breathing young children. AJR 187:1019–1023

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Mo Goo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, S.H., Goo, J.M. & Goo, H.W. Quantitative thoracic CT techniques in adults: can they be applied in the pediatric population?. Pediatr Radiol 43, 308–314 (2013). https://doi.org/10.1007/s00247-012-2467-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-012-2467-2

Keywords

Navigation