Skip to main content

Advertisement

Log in

Medication neurotoxicity in children

  • Pictorial Essay
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

Medication neurotoxicity may have a variety of imaging manifestations in children. In this pictorial essay, we review the two most common brain injury patterns, posterior reversible encephalopathy syndrome (PRES) and acute toxic leukoencephalopathy (ATL). Proposed etiologies, salient features on neurological imaging, and methods for differentiating these entities and their implications will be discussed. Certain agents do not fall into these two broad patterns but instead characteristically involve central structures. We individually review several medications and their respective neurotoxic appearances including methotrexate, cyclosporine A, tacrolimus, metronidazole and vigabatrin. Diagnosis of medication neurotoxicity may be achieved by the combination of new-onset neurological deficits, recent initiation of a new therapy agent and distinctive findings on magnetic resonance imaging. Clinical and radiological improvement and/or resolution are frequently observed after the agent is discontinued.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hinchey J, Chaves C, Appignani B et al (1996) A reversible posterior leukoencephalopathy syndrome. N Engl J Med 334:494–500

    Article  PubMed  CAS  Google Scholar 

  2. Ugurel MS, Hayakawa M (2005) Implications of post-gadolinium MRI results in 13 cases with posterior reversible encephalopathy syndrome. Eur J Radiol 53:441–449

    Article  PubMed  Google Scholar 

  3. Hefzy HM, Bartynski WS, Boardman JF et al (2009) Hemorrhage in posterior reversible encephalopathy syndrome: imaging and clinical features. AJNR 30:1371–1379

    Article  PubMed  CAS  Google Scholar 

  4. Incecik F, Hergüner MO, Altunbasak S et al (2009) Evaluation of nine children with reversible posterior encephalopathy syndrome. Neurol India 57:475–478

    Article  PubMed  Google Scholar 

  5. McKinney AM, Short J, Truwit CL et al (2007) Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR 189:904–912

    Article  PubMed  Google Scholar 

  6. Casey SO, Sampaio RC, Michel E et al (2000) Posterior reversible encephalopathy syndrome: utility of fluid attenuated inversion recovery MR imaging in the detection of cortical and subcortical lesions. AJNR 21:1199–1206

    PubMed  CAS  Google Scholar 

  7. Casey SO, Truwit CL (2000) Pontine reversible edema: a newly recognized imaging variant of hypertensive encephalopathy? AJNR 21:243–245

    PubMed  CAS  Google Scholar 

  8. Mukherjee P, McKinstry RC (2001) Reversible posterior leukoencephalopathy syndrome: evaluation with diffusion-tensor imaging. Radiology 219:756–765

    PubMed  CAS  Google Scholar 

  9. Covarrubias DJ, Luetmer PH, Campeau NG (2002) Posterior reversible encephalopathy syndrome: prognostic utility of quantitative diffusion-weighted MR images. AJNR 23:1038–1048

    PubMed  Google Scholar 

  10. Schwartz RB, Feske SK, Polak JF et al (2000) Preeclampsia-eclampsia: clinical and neuroradiographic correlates and insights into the pathogenesis of hypertensive encephalopathy. Radiology 217:371–376

    PubMed  CAS  Google Scholar 

  11. Provenzale JM, Petrella JR, Cruz LC Jr et al (2001) Quantitative assessment of diffusion abnormalities in posterior reversible encephalopathy syndrome. AJNR 22:1455–1461

    PubMed  CAS  Google Scholar 

  12. Tamaki K, Sadoshima S, Baumbach GL et al (1984) Evidence that disruption of the blood-brain barrier precedes reduction in cerebral blood flow in hypertensive encephalopathy. Hypertension 6(2 Pt 2):I75–I81

    PubMed  CAS  Google Scholar 

  13. Trommer BL, Homer D, Mikhael MA (1988) Cerebral vasospasm and eclampsia. Stroke 19:326–329

    Article  PubMed  CAS  Google Scholar 

  14. Ito T, Sakai T, Inagawa S et al (1995) MR angiography of cerebral vasospasm in preeclampsia. AJNR 16:1344–1346

    PubMed  CAS  Google Scholar 

  15. McKinney AM, Kieffer SA, Paylor RT et al (2009) Acute toxic leukoencephalopathy: potential for reversibility clinically and on MRI with diffusion-weighted and FLAIR imaging. AJR 193:192–206

    Article  PubMed  Google Scholar 

  16. Beitinjaneh A, McKinney AM, Cao Q et al (2011) Toxic leukoencephalopathy following fludarabine-associated hematopoietic cell transplantation. Biol Blood Marrow Transplant 17:300–308

    Article  PubMed  CAS  Google Scholar 

  17. Filley CM (1999) Toxic leukoencephalopathy. Clin Neuropharmacol 22:249–260

    PubMed  CAS  Google Scholar 

  18. Filley CM (2001) Toxic leukoencephalopathy. N Engl J Med 345:425–432

    Article  PubMed  CAS  Google Scholar 

  19. Sandoval C, Kutscher M, Jayabose S et al (2003) Neurotoxicity of intrathecal methotrexate: MR imaging findings. AJNR 24:1887–1890

    PubMed  Google Scholar 

  20. Rollins N, Winick N, Bash R et al (2004) Acute methotrexate neurotoxicity: findings on diffusion-weighted imaging and correlation with clinical outcome. AJNR 25:1688–1695

    PubMed  Google Scholar 

  21. Shibutani M, Okeda R (1989) Experimental study on subacute neurotoxicity of methotrexate in cats. Acta Neuropathol 78:291–300

    Article  PubMed  CAS  Google Scholar 

  22. Akiba T, Okeda R, Tajima T (1996) Metabolites of 5-fluorouracil, alpha-fluoro-beta-alanine and fluoroacetic acid, directly injure myelinated fibers in tissue culture. Acta Neuropathol 92:8–13

    Article  PubMed  CAS  Google Scholar 

  23. Okeda R, Shibutani M, Matsuo T et al (1990) Experimental neurotoxicity of 5-fluorouracil and its derivatives is due to poisoning by the monofluorinated organic metabolites, monofluoroacetic acid and alpha-fluoro-beta-alanine. Acta Neuropathol 81:66–73

    Article  PubMed  CAS  Google Scholar 

  24. Fisher MJ, Khademian ZP, Simon EM et al (2005) Diffusion-weighted MR imaging of early methotrexate-related neurotoxicity in children. AJNR 26:1686–1689

    PubMed  Google Scholar 

  25. Chessels JM, Cox TC, Kendall B et al (1990) Neurotoxicity in lymphoblastic leukaemia: comparison of oral and intramuscular methotrexate and two doses of radiation. Arch Dis Child 65:416–422

    Article  Google Scholar 

  26. Jaffe N, Takaue Y, Anzai T et al (1985) Transient neurologic disturbances induced by high-dose methotrexate treatment. Cancer 56:1356–1360

    Article  PubMed  CAS  Google Scholar 

  27. Gowan GM, Herrington JD, Simonetta AB (2002) Methotrexate induced toxic leukoencephalopathy. Pharmacotherapy 22:1183–1187

    Article  PubMed  Google Scholar 

  28. Matsumoto K, Takahashi S, Sato A et al (1995) Leukoencephalopathy in childhood hematopoietic neoplasm caused by moderate-dose methotrexate and prophylactic cranial radiotherapy: an MR analysis. Int J Radiat Oncol Biol Phys 32:913–918

    Article  PubMed  CAS  Google Scholar 

  29. Lien HH, Blomlie V, Saeter G et al (1991) Osteogenic sarcoma: MR signal abnormalities of the brain in asymptomatic patients treated with high-dose methotrexate. Radiology 179:547–550

    PubMed  CAS  Google Scholar 

  30. Rosencrantz R, Moon A, Raynes H et al (2001) Cyclosporine-induced neurotoxicity during treatment of Crohn’s disease: lack of correlation with previously reported risk factors. Am J Gastroenterol 92:2778–2782

    Article  Google Scholar 

  31. Trullemans F, Grignard F, Van Camp B et al (2001) Clinical findings and magnetic resonance imaging in severe cyclosporine-related neurotoxicity after allogenic bone marrow transplantation. Eur J Haematol 67:94–99

    Article  PubMed  CAS  Google Scholar 

  32. Bartynski WS, Zeigler Z, Spearman MP et al (2001) Etiology of cortical and white matter lesions in cyclosporine-A and FK-506 neurotoxicity. AJNR 22:1901–1914

    PubMed  CAS  Google Scholar 

  33. Lucey MR, Kolars JC, Merion RM et al (1990) Cyclosporin toxicity at therapeutic blood levels and cytochrome P-450 IIIA. Lancet 335:11–15

    Article  PubMed  CAS  Google Scholar 

  34. Reece DE, Frei-Lahr DA, Shephard JD et al (1991) Neurologic complications in allogenic bone marrow transplant patients receiving cyclosporin. Bone Marrow Transplant 8:393–401

    PubMed  CAS  Google Scholar 

  35. Gijtenbeek JM, van den Bent MJ, Vecht CJ (1999) Cyclosporine neurotoxicity: a review. J Neurol 246:339–346

    Article  PubMed  CAS  Google Scholar 

  36. Schwartz RB, Bravo SM, Klufas RA et al (1995) Cyclosporine neurotoxicity and its relationship to hypertensive encephalopathy: CT and MR findings in 16 cases. AJR 165:627–631

    PubMed  CAS  Google Scholar 

  37. Appignani BA, Bhadelia RA, Blacklow SC et al (1996) Neuroimaging findings in patients on immunosuppressive therapy: experience with tacrolimus toxicity. AJR 166:683–688

    PubMed  CAS  Google Scholar 

  38. Lacaille F, Hertz-Pannier L, Nassogne MC (2004) Magnetic resonance imaging for the diagnosis of acute leukoencephalopathy in children treated with tacrolimus. Neuropediatrics 35:130–133

    Article  PubMed  CAS  Google Scholar 

  39. Ahn KF, Lee JW, Hahn ST et al (2003) Diffusion-weighted MRI and ADC mapping in FK506 neurotoxicity. Br J Radiol 76:916–919

    Article  PubMed  CAS  Google Scholar 

  40. Freeman CD, Klutman NE, Lamp KC (1997) Metronidazole: a therapeutic review and update. Drugs 54:679–708

    Article  PubMed  CAS  Google Scholar 

  41. Frytak S, Moertel CH, Childs DS (1978) Neurologic toxicity associated with high-dose metronidazole therapy. Ann Intern Med 88:361–362

    PubMed  CAS  Google Scholar 

  42. Kim E, Na DG, Kim EY et al (2007) MR imaging of metronidazole-induced encephalopathy: lesion distribution and diffusion-weighted imaging findings. AJNR 28:1652–1658

    Article  PubMed  CAS  Google Scholar 

  43. Heaney CJ, Campeau NG, Lindell EP (2003) MR imaging and diffusion-weighted imaging changes in metronidazole (Flagyl)-induced cerebellar toxicity. AJNR 24:1615–1617

    PubMed  Google Scholar 

  44. Ahmed A, Loes DJ, Bressler EL (1995) Reversible resonance imaging findings in metronidazole-induced encephalopathy. Neurology 45:588–589

    PubMed  CAS  Google Scholar 

  45. Cecil KM, Halsted MJ, Schapiro M et al (2002) Reversible MR imaging and MR spectroscopy abnormalities in association with metronidazole therapy. J Comput Assist Tomogr 26:948–951

    Article  PubMed  Google Scholar 

  46. McErlean A, Abdalia K, Donoghue V et al (2010) The dentate nucleus in children: normal development and patterns of disease. Pediatr Radiol 40:326–339

    Article  PubMed  Google Scholar 

  47. Pearl PL, Vezina LG, Saneto RP et al (2009) Cerebral MRI abnormalities associated with vigabatrin therapy. Epilepsia 50:184–194

    Article  PubMed  CAS  Google Scholar 

  48. Ben-Ari Y (2006) Basic developmental rules and their implications for epilepsy in the immature brain. Epileptic Disord 8:91–102

    PubMed  Google Scholar 

  49. Dracopoulos A, Widjaja E, Raybaud C et al (2010) Vigabatrin-associated reversible MRI signal changes in patients with infantile spasms. Epilepsia 51:1297–1304

    Article  PubMed  Google Scholar 

  50. Wheless JW, Carmant L, Bebin M et al (2009) Magnetic resonance imaging abnormalities associated with vigabatrin in patients with epilepsy. Epilepsia 50:195–205

    Article  PubMed  CAS  Google Scholar 

  51. Thapa M, Khanna PC (2010) Vigabatrin-associated diffusion MRI abnormalities in tuberous sclerosis. Pediatr Radiol 48(Suppl 1):S153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh S. Iyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iyer, R.S., Chaturvedi, A., Pruthi, S. et al. Medication neurotoxicity in children. Pediatr Radiol 41, 1455–1464 (2011). https://doi.org/10.1007/s00247-011-2191-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-011-2191-3

Keywords

Navigation