Skip to main content

Advertisement

Log in

MRI of the hypothalamic-pituitary axis in children

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

In childhood, the MR characteristics of the normal pituitary gland are well established. During the first 2 months of life the adenohypophysis demonstrates high signal. Pituitary gland height (PGH) decreases during the 1st year of life and then increases, reaching a plateau after puberty. The magnetization transfer ratio (MTR) increases in both sexes up to the age of 20 years. On dynamic contrast-enhanced studies, the posterior pituitary lobe enhances simultaneously with the straight sinus, and the adenohypophysis later, but within 30 s. In genetically determined dysfunctional states, the adenohypophysis may be normal, hypoplastic, or enlarged. Pituitary enlargement, observed in Prop 1 gene mutations, is characterized by a mass interposed between the anterior and posterior lobes. An ectopic posterior lobe (EPP), associated with a hypoplastic or absent pituitary stalk, may be observed in patients with hypopituitarism. Tumors of the hypothalamic-pituitary (HP) axis may be the origin of adenohypophyseal deficiencies. A small hypointense adenohypophysis is found in iron overload states and is often associated with hypogonadotrophic hypogonadism. Absence of the posterior lobe bright signal, with or without a thick pituitary stalk or a mass at any site from the median eminence to the posterior pituitary lobe, may be found in diabetes insipidus. Hydrocephalus, suprasellar arachnoid cysts, hypothalamic hamartomas and craniopharyngiomas may result in central precocious puberty (CPP). Increased PGH in girls with idiopathic CPP is useful for its differential diagnosis from premature thelarche (PT). Pituitary adenomas, observed mainly in adolescents, present the same MR characteristics as those in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adamsbaum C, Chaussain JL (1996) Diagnostic strategies in pediatric imaging. Horm Res 46:165–169

    CAS  PubMed  Google Scholar 

  2. Doraiswamy PM, Potts JM, Axelson DA, et al (1992) MR assessment of pituitary gland morphology in healthy volunteers: age- and gender-related differences. AJNR 13:1295–1299

    CAS  PubMed  Google Scholar 

  3. Elster AD (1993) Modern imaging of the pituitary. Radiology 187:1–14

    Google Scholar 

  4. Cox TD, Elster AD (1991) Normal pituitary gland: changes in shape, size and signal intensity during the 1st year of life at MR imaging. Radiology 179:721–724

    Google Scholar 

  5. Dietrich RB, Lis LE, Greensite FS, et al (1995) Normal MR appearance of the pituitary gland in the first 2 years of life. AJNR 16:1413–1419

    CAS  PubMed  Google Scholar 

  6. Argyropoulou MI, Xydis V, Kiortsis DN, et al (2004) Pituitary gland signal in pre-term infants during the 1st year of life: an MRI study. Neuroradiology 46:1031–1035

    Article  PubMed  Google Scholar 

  7. Fujisawa I, Asato R, Nishimura K, et al (1987) Anterior and posterior lobes of the pituitary gland: assessment by 1.5 T MR imaging. J Comput Assist Tomogr 11:214–220

    CAS  PubMed  Google Scholar 

  8. Lee MH, Choi HY, Sung YA, et al (2001) High signal intensity of the posterior pituitary gland on T1-weighted MR images. Correlation with plasma vasopressin concentration to water deprivation. Acta Radiol 42:129–134

    Google Scholar 

  9. Tsunoda A, Okuda O, Sato K (1997) MR height of the pituitary gland as a function of age and sex: especially physiological hypertrophy in adolescence and in climacterium. AJNR 18:551–554

    CAS  PubMed  Google Scholar 

  10. Argyropoulou M, Perignon F, Brunelle F, et al (1991) Height of normal pituitary gland as a function of age evaluated by magnetic resonance imaging in children. Pediatr Radiol 21:247–249

    CAS  PubMed  Google Scholar 

  11. Nagel BH, Palmbach M, Petersen D, et al (1997) Magnetic resonance images of 91 children with different causes of short stature: pituitary size reflects growth hormone secretion. Eur J Pediatr 156:758–763

    Article  CAS  PubMed  Google Scholar 

  12. Lurie SN, Doraiswamy PM, Husain MM, et al (1990) In vivo assessment of pituitary gland volume with magnetic resonance imaging: the effect of age. J Clin Endocrinol Metab 71:505–508

    CAS  PubMed  Google Scholar 

  13. Kiortsis D, Xydis V, Drougia AG, et al (2004) The height of the pituitary in preterm infants during the first 2 years of life: an MRI study. Neuroradiology 46:224–226

    Article  CAS  PubMed  Google Scholar 

  14. Argyropoulou MI, Kiortsis DN, Metafratzi Z, et al (2001) Magnetisation transfer imaging of the normal adenohypophysis: the effect of sex and age. Neuroradiology 43:305–308

    Article  CAS  PubMed  Google Scholar 

  15. Kiortsis DN, Argyropoulou MI, Bitsis S, et al (2000) Magnetization transfer technique: a new diagnostic tool for the postoperative assessment of pituitary adenomas. Clin Endocrinol 53:399–400

    Article  CAS  Google Scholar 

  16. Kiortsis DN, Argyropoulou MI, Efremidis SC, et al (2001) Hyperprolactinaemia induced by a nonsecreting pituitary adenoma: differential diagnosis with magnetization transfer MRI technique. Clin Endocrinol 55:423–426

    Article  CAS  Google Scholar 

  17. Maghnie M, Genovese E, Arico M, et al (1994) Evolving pituitary hormone deficiency is associated with pituitary vasculopathy: dynamic MR study in children with hypopituitarism, diabetes insipidus, and Langerhans cell histiocytosis. Radiology 193:493–499

    Google Scholar 

  18. Genovese E, Maghnie M, Beluffi G, et al (1997) Hypothalamic-pituitary vascularization in pituitary stalk transection syndrome: is the pituitary stalk really transected? The role of gadolinium-DTPA with spin-echo T1 imaging and turbo-FLASH technique. Pediatr Radiol 27:48–53

    Article  CAS  PubMed  Google Scholar 

  19. Lindsay R, Feldkamp M, Harris D, et al (1994) Utah growth study: growth standards and the prevalence of growth hormone deficiency. J Pediatr 125:29–35

    CAS  PubMed  Google Scholar 

  20. Phillips JA 3rd, Cogan JD (1994) Genetic basis of endocrine disease 6. Molecular basis of familial human growth hormone deficiency. J Clin Endocrinol Metab 78:11–16

    Article  PubMed  Google Scholar 

  21. Osorio MG, Marui S, Jorge AA, et al (2002) Pituitary magnetic resonance imaging and function in patients with growth hormone deficiency with and without mutations in GHRH-R, GH-1, or PROP-1 genes. J Clin Endocrinol Metab 87:5076–5084

    Article  CAS  PubMed  Google Scholar 

  22. Voutetakis A, Argyropoulou M, Sertedaki A, et al (2004) Pituitary magnetic resonance imaging in 15 patients with Prop1 gene mutations: pituitary enlargement may originate from the intermediate lobe. J Clin Endocrinol Metab 89:2200–2206

    Article  CAS  PubMed  Google Scholar 

  23. Ward RD, Raetzman LT, Suh H, et al (2005) Role of PROP1 in pituitary gland growth. Mol Endocrinol 19:698–710

    Article  CAS  PubMed  Google Scholar 

  24. Argyropoulou M, Perignon F, Brauner R, et al (1992) Magnetic resonance imaging in the diagnosis of growth hormone deficiency. J Pediatr 120:886–891

    CAS  PubMed  Google Scholar 

  25. Collet-Solberg PF, Sernyak H, Satin-Smith M, et al (1997) Endocrine outcome in long-term survivors of low-grade hypothalamic/chiasmatic glioma. Clin Endocrinol 47:79–85

    Article  CAS  Google Scholar 

  26. Sartoretti-Schefer S, Wichmann W, Aguzzi A, et al (1997) MR differentiation of adamantinous and squamous-papillary craniopharyngiomas. AJNR 18:77–87

    CAS  PubMed  Google Scholar 

  27. Leger J, Velasquez A, Garel C, et al (1999) Thickened pituitary stalk on magnetic resonance imaging in children with central diabetes insipidus. J Clin Endocrinol Metab 84:1954–1960

    Article  CAS  PubMed  Google Scholar 

  28. Kone-Paut I, Portas M, Wechsler B, et al (1999) The pitfall of silent neurosarcoidosis. Pediatr Neurol 20:215–218

    Article  CAS  PubMed  Google Scholar 

  29. Binder G, Nagel BH, Ranke MB, et al (2002) Isolated GH deficiency (IGHD) type II: imaging of the pituitary gland by magnetic resonance reveals characteristic differences in comparison with severe IGHD of unknown origin. Eur J Endocrinol 147:755–760

    Article  CAS  PubMed  Google Scholar 

  30. Zucchini S, Ambrosetto P, Baroncini C, et al (1996) Normal pituitary size in two patients with growth hormone gene deletion. J Pediatr Endocrinol Metab 9:545–548

    CAS  PubMed  Google Scholar 

  31. Kornreich L, Horev G, Lazar L, et al (1997) MR findings in hereditary isolated growth hormone deficiency. AJNR 18:1743–1747

    CAS  PubMed  Google Scholar 

  32. Murray RA, Maheshwari HG, Russell EJ, et al (2000) Pituitary hypoplasia in patients with a mutation in the growth hormone-releasing hormone receptor gene. AJNR 21:685–689

    CAS  PubMed  Google Scholar 

  33. Cohen LE, Wondisford FE, Radovick S (1996) Role of Pit-1 in the gene expression of growth hormone, prolactin, and thyrotropin. Endocrinol Metab Clin North Am 25:523–540

    CAS  PubMed  Google Scholar 

  34. Deladoey J, Fluck C, Buyukgebiz A, et al (1999) “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab 84:1645–1650

    Article  CAS  PubMed  Google Scholar 

  35. Fofanova O, Takamura N, Kinoshita E, et al (2000) MR imaging of the pituitary gland in children and young adults with congenital combined pituitary hormone deficiency associated with PROP1 mutations. AJR 174:555–559

    CAS  PubMed  Google Scholar 

  36. Cohen RN, Cohen LE, Botero D, et al (2003) Enhanced repression by HESX1 as a cause of hypopituitarism and septooptic dysplasia. J Clin Endocrinol Metab 88:4832–4839

    Article  CAS  PubMed  Google Scholar 

  37. Rainbow LA, Rees SA, Shaikh MG, et al (2005) Mutation analysis of POUF-1, PROP-1 and HESX-1 show low frequency of mutations in children with sporadic forms of combined pituitary hormone deficiency and septo-optic dysplasia. Clin Endocrinol 62:163–168

    Article  CAS  Google Scholar 

  38. Maghnie M, Ghirardello S, Genovese E, et al (2004) Magnetic resonance imaging of the hypothalamus-pituitary unit in children suspected of hypopituitarism: who, how and when to investigate. J Endocrinol Invest 27:496–509

    CAS  PubMed  Google Scholar 

  39. Netchine I, Sobrier ML, Krude H, et al (2000) Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat Genet 25:182–186

    Article  CAS  PubMed  Google Scholar 

  40. Chen S, Leger J, Garel C, et al (1999) Growth hormone deficiency with ectopic neurohypophysis: anatomical variations and relationship between the visibility of the pituitary stalk asserted by magnetic resonance imaging and anterior pituitary function. J Clin Endocrinol Metab 84:2408–2413

    Article  CAS  PubMed  Google Scholar 

  41. Maghnie M, Strigazzi C, Tinelli C, et al (1999) Growth hormone (GH) deficiency (GHD) of childhood onset: reassessment of GH status and evaluation of the predictive criteria for permanent GHD in young adults. J Clin Endocrinol Metab 84:1324–1328

    Article  CAS  PubMed  Google Scholar 

  42. Coutant R, Rouleau S, Despert F, et al (2001) Growth and adult height in GH-treated children with nonacquired GH deficiency and idiopathic short stature: the influence of pituitary magnetic resonance imaging findings. J Clin Endocrinol Metab 86:4649–4654

    Article  CAS  PubMed  Google Scholar 

  43. Leger J, Danner S, Simon D, et al (2005) Do all patients with childhood onset growth hormone deficiency (GHD) and ectopic neurohypophysis have persistent GHD in adulthood? J Clin Endocrinol Metab 90:650–656

    Article  CAS  PubMed  Google Scholar 

  44. Fujisawa I, Kikuchi K, Nishimura K, et al (1987) Transection of the pituitary stalk: development of an ectopic posterior lobe assessed with MR imaging. Radiology 165:487–489

    Google Scholar 

  45. Kelly WM, Kucharczyk W, Kucharczyk J, et al (1988) Posterior pituitary ectopia: an MR feature of pituitary dwarfism. AJNR 9:453–460

    CAS  PubMed  Google Scholar 

  46. Triulzi F, Scotti G, di Natale B, et al (1994) Evidence of a congenital midline brain anomaly in pituitary dwarfs: a magnetic resonance imaging study in 101 patients. Pediatrics 93:409–416

    CAS  PubMed  Google Scholar 

  47. Hamilton J, Chitayat D, Blaser S, et al (1998) Familial growth hormone deficiency associated with MRI abnormalities. Am J Med Genet 80:128–132

    Google Scholar 

  48. Laron Z (2004) Laron syndrome (primary growth hormone resistance or insensitivity): the personal experience 1958–2003. J Clin Endocrinol Metab 89:1031–1044

    Article  CAS  PubMed  Google Scholar 

  49. Kornreich L, Horev G, Schwarz M, et al (2003) Pituitary size in patients with Laron syndrome (primary GH insensitivity). Eur J Endocrinol 148:339–341

    Article  CAS  PubMed  Google Scholar 

  50. Martinez R, Honegger J, Fahlbusch R, et al (2003) Endocrine findings in patients with optico-hypothalamic gliomas. Exp Clin Endocrinol Diabetes 111:162–167

    Article  CAS  PubMed  Google Scholar 

  51. Molla E, Marti-Bonmati L, Revert A, et al (2001) Craniopharyngiomas: identification of different semiological patterns with MRI. Eur Radiol 12:1829–1836

    PubMed  Google Scholar 

  52. Paja M, Lucas T, Garcia-Uria J, et al (1995) Hypothalamic-pituitary dysfunction in patients with craniopharyngioma. Clin Endocrinol 42:467–473

    CAS  Google Scholar 

  53. Chen YD, Shu SG, Chi CS, et al (2001) Precocious puberty associated with growth hormone deficiency in a patient with craniopharyngioma: report of one case. Acta Paediatr Taiwan 42:243–247

    Google Scholar 

  54. Hayward R (1999) The present and future management of childhood craniopharyngioma. Childs Nerv Syst 15:764–769

    Article  CAS  PubMed  Google Scholar 

  55. Jayasundar R, Ammini AC, Gupta R, et al (1999) Evaluation of the pituitary gland in idiopathic hypogonadotropic hypogonadism. Acta Radiol 40:88–94

    Google Scholar 

  56. Sato N, Katsumata N, Kagami M, et al (2004) Clinical assessment and mutation analysis of Kallmann syndrome 1 (KAL1) and fibroblast growth factor receptor 1 (FGFR1, or KAL2) in five families and 18 sporadic patients. J Clin Endocrinol Metab 89:1079–1088

    Article  CAS  PubMed  Google Scholar 

  57. Truwit CL, Barkovich JA, Grumbach MM, et al (1993) MR imaging of Kallmann syndrome, a genetic disorder of neuronal migration affecting the olfactory and genital systems. AJNR 14:827–838

    CAS  PubMed  Google Scholar 

  58. Madan R, Sawlani V, Gupta S, et al (2004) MRI findings in Kallmann syndrome. Neurol India 52:501–503

    CAS  PubMed  Google Scholar 

  59. Argyropoulou M, Metafratzi Z, Kiortsis DN, et al (2000) T2 relaxation rate as an index of pituitary iron overload in patients with β-thalassemia major. AJR 175:1567–1569

    CAS  PubMed  Google Scholar 

  60. Argyropoulou M, Kiortsis DN, Metafratzi Z, et al (2001) Pituitary gland height evaluated by MR in patients with β-thalassemia major: a marker of pituitary gland function. Neuroradiology 43:1056–1058

    Article  CAS  PubMed  Google Scholar 

  61. Fluck CE, Deladoey J, Nayak S, et al (2001) Autosomal dominant neurohypophyseal diabetes insipidus in a Swiss family, caused by a novel mutation (C59Delta/A60W) in the neurophysin moiety of prepro-vasopressin-neurophysin II (AVP-NP II). Eur J Endocrinol 145:439–444

    Article  CAS  PubMed  Google Scholar 

  62. Kanemitsu N, Kawauchi A, Nishida M, et al (2002) Familial central diabetes insipidus detected by nocturnal enuresis. Pediatr Nephrol 17:1063–1065

    Article  PubMed  Google Scholar 

  63. Maghnie M, Cosi G, Genovese E, et al (2000) Central diabetes insipidus in children and young adults. N Engl J Med 343:998–1007

    Article  CAS  PubMed  Google Scholar 

  64. Mootha SL, Barkovich AJ, Grumbach MM, et al (1997) Idiopathic hypothalamic diabetes insipidus, pituitary stalk thickening, and the occult intracranial germinoma in children and adolescents. J Clin Endocrinol Metab 82:1362–1367

    Article  CAS  PubMed  Google Scholar 

  65. Fujisawa I (2004) Magnetic resonance imaging of the hypothalamic-neurohypophyseal system. J Neuroendocrinol 16:297–302

    Article  CAS  PubMed  Google Scholar 

  66. Liang L, Korogi Y, Sugahara T, et al (2002) MRI of intracranial germ-cell tumours. Neuroradiology 44:382–388

    Article  CAS  PubMed  Google Scholar 

  67. Cemeroglu AP, Blaivas M, Muraszko KM, et al (1997) Lymphocytic hypophysitis presenting with diabetes insipidus in a 14-year-old girl: case report and review of the literature. Eur J Pediatr 156:684–688

    Article  CAS  PubMed  Google Scholar 

  68. Maghnie M, Genovese E, Sommaruga MG (1998) Evolution of childhood central diabetes insipidus into panhypopituitarism with a large hypothalamic mass: is ‘lymphocytic infundibuloneurohypophysitis‘ in children a different entity? Eur J Endocrinol 139:635–640

    Article  CAS  PubMed  Google Scholar 

  69. Bettendorf M, Fehn M, Grulich-Henn J, et al (1999) Lymphocytic hypophysitis with central diabetes insipidus and consequent panhypopituitarism preceding a multifocal, intracranial germinoma in a prepubertal girl. Eur J Pediatr 158:288–292

    Article  CAS  PubMed  Google Scholar 

  70. Maghnie M (2003) Diabetes insipidus. Horm Res 59[Suppl 1]:42–54

    Article  CAS  Google Scholar 

  71. Konrad D, Gartenmann M, Martin E, et al (2000) Central diabetes insipidus as the first manifestation of neurosarcoidosis in a 10-year-old girl. Horm Res 54:98–100

    Article  CAS  PubMed  Google Scholar 

  72. Fontoura M, Brauner R, Prevot C, et al (1989) Precocious puberty in girls: early diagnosis of a slowly progressing variant. Arch Dis Child 64:1170–1176

    CAS  PubMed  Google Scholar 

  73. Perignon F, Brauner R, Argyropoulou M, et al (1992) Precocious puberty in girls: pituitary height as an index of hypothalamo-pituitary activation. J Clin Endocrinol Metab 75:1170–1172

    Article  CAS  PubMed  Google Scholar 

  74. Chalumeau M, Hadjiathanasiou CG, Ng SM, et al (2003) Selecting girls with precocious puberty for brain imaging: validation of European evidence-based diagnosis rule. J Pediatr 143:445–450

    Article  PubMed  Google Scholar 

  75. Prasad S, Shah J, Patkar D, et al (2000) Giant hypothalamic hamartoma with cystic change: report of two cases and review of the literature. Neuroradiology 42:648–650

    Article  CAS  PubMed  Google Scholar 

  76. Nishio S, Morioka T, Hamada Y, et al (2001) Hypothalamic hamartoma associated with an arachnoid cyst. J Clin Neurosci 8:46–48

    Google Scholar 

  77. Lopponen T, Paakko E, Laitinen J, et al (1997) Pituitary size and function in children and adolescents with shunted hydrocephalus. Clin Endocrinol 46:691–699

    Article  CAS  Google Scholar 

  78. Hochhaus F, Butenandt O, Schwarz HP, et al (1997) Auxological and endocrinological evaluation of children with hydrocephalus and/or meningomyelocele. Eur J Pediatr 156:597–601

    Article  CAS  PubMed  Google Scholar 

  79. Huang HP, Tung YC, Tsai WY, et al (2004) Arachnoid cyst with GnRH-dependent sexual precocity and growth hormone deficiency. Pediatr Neurol 30:143–145

    PubMed  Google Scholar 

  80. Cannavo S, Venturino M, Curto L, et al (2003) Clinical presentation and outcome of pituitary adenomas in teenagers. Clin Endocrinol 58:519–527

    CAS  Google Scholar 

  81. Nishio S, Morioka T, Suzuki S, et al (2001) Pituitary tumours in adolescence: clinical behaviour and neuroimaging features of seven cases. J Clin Neurosci 8:231–234

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria I. Argyropoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Argyropoulou, M.I., Kiortsis, D.N. MRI of the hypothalamic-pituitary axis in children. Pediatr Radiol 35, 1045–1055 (2005). https://doi.org/10.1007/s00247-005-1512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-005-1512-9

Keywords

Navigation