Skip to main content
Log in

Acid–base metabolism: implications for kidney stosne formation

  • Article
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

The physiology and pathophysiology of renal H+ ion excretion and urinary buffer systems are reviewed. The main focus is on the two major conditions related to acid–base metabolism that cause kidney stone formation, i.e., distal renal tubular acidosis (dRTA) and abnormally low urine pH with subsequent uric acid stone formation. Both the entities can be seen on the background of disturbances of the major urinary buffer system, \( {{\rm NH}}_{{{\rm 3}}} {\hbox{ + H}}^{{\hbox{ + }}} {\hbox{ }} \leftrightarrow {\hbox{ NH}}^{{\hbox{ + }}}_{{{\rm 4}}} \). On the one hand, reduced distal tubular secretion of H+ ions results in an abnormally high urinary pH and either incomplete or complete dRTA. On the other hand, reduced production/availability of \( {{\rm NH}}^{{\hbox{ + }}}_{{{\rm 4}}} \) is the cause of an abnormally low urinary pH, which predisposes to uric acid stone formation. Most recent research indicates that the latter abnormality may be a renal manifestation of the increasingly prevalent metabolic syndrome. Despite opposite deviations from normal urinary pH values, both the dRTA and uric acid stone formation due to low urinary pH require the same treatment, i.e., alkali. In the dRTA, alkali is needed for improving the body’s buffer capacity, whereas the goal of alkali treatment in uric acid stone formers is to increase the urinary pH to 6.2–6.8 in order to minimize uric acid crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Rose BD, Post TW (2001) Clinical physiology of acid–base and electrolyte disorders, 5th edn, chapt 11. McGraw-Hill, New York

  2. Lackson BA, Ott CE (1999) Integrated medical sciences: renal system, 1st edn, chapt 7. Fence Creek Publishing, Madison/CT

  3. Hamm LL, Alpern RJ (1996) In: Coe FL et al (eds) Kidney stones: medical and surgical management, chapt 12. Lippincott-Raven, Philadelphia

  4. Rose BD, Post TW (2001) Clinical physiology of acid–base and electrolyte disorders, 5th edn, chapt 19. McGraw-Hill, New York

  5. Simpson DP (1983) Citrate excretion: a window on renal metabolism. Am J Physiol 244:F223–F234

    PubMed  CAS  Google Scholar 

  6. Pak CY (1991) Citrate and renal calculi: new insights and future directions. Am J Kidney Dis 17:420–425

    PubMed  CAS  Google Scholar 

  7. Erwin DT, Kok DJ, Alam J, Vaughn J, Coker O, Carriere BT et al (1994) Calcium oxalate stone agglomeration reflects stone-forming activity: citrate inhibition depends on macromolecules larger than 30 kDa. Am J Kidney Dis 24:893–900

    PubMed  CAS  Google Scholar 

  8. Hess B, Jordi S, Zipperle L, Ettinger E, Giovanoli R (2000) Citrate determines calcium oxalate crystallization kinetics and crystal morphology— studies in presence of Tamm–Horsfall protein of a healthy subject and a severely recurrent calcium stone former. Nephrol Dial Transplant 15:366–374

    Article  PubMed  CAS  Google Scholar 

  9. Hamm LL, Hering-Smith KS (2002) Pathophysiology of hypocitraturic nephro-lithiasis. Endocrinol Metab Clin North Am 31:885–893

    Article  PubMed  CAS  Google Scholar 

  10. Hess B, Michel R, Takkinen R, Ackermann D, Jaeger Ph (1994) Risk factors for low urinary citrate in calcium nephrolithiasis: low vegetable fibre intake and low urine volume to be added to the list. Nephrol Dial Transplant 9:642–649

    PubMed  CAS  Google Scholar 

  11. DuBose TD Jr (2004) In: Brenner BM (ed) Brenner and Rector’s the kidney, 7th edn, vol 1, chapt 20. Saunders, Philadelphia

  12. Mattle D, Hess B (2005) Preventive treatment of nephrolithiasis with alkali citrate—a critical review. Urol Res 33:73–79

    Article  PubMed  CAS  Google Scholar 

  13. Coe FL, Strauss AL, Tembe V, Le Dun S (1980) Uric acid saturation in calcium nephrolithiasis. Kidney Int 17:662–668

    Article  PubMed  CAS  Google Scholar 

  14. Pak CYC, Sakhaee K, Peterson RD, Poindexter JR, Frawley WH (2001) Biochemical profile of idiopathic uric acid nephrolithiasis. Kidney Int 60:757–761

    Article  PubMed  CAS  Google Scholar 

  15. Kamel KS, Cheema-Dhadli S, Halperin ML (2002) Studies on the pathophysiology of the low urine pH in patients with uric acid stones. Kidney Int 61:988–994

    Article  PubMed  CAS  Google Scholar 

  16. Sakhaee S, Adams-Huet B, Moe OW, Pak CYC (2002) Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int 62:971–979

    Article  PubMed  CAS  Google Scholar 

  17. Abate N, Chandalia M, Cabo-Chan AV Jr, Moe OW, Sakhaee K (2004) The metabolic syndrome and uric acid nephrolithiasis: novel features of renal manifestation of insulin resistance. Kidney Int 65:386–392

    Article  PubMed  CAS  Google Scholar 

  18. DeFronzo RE, Tobin JD, Andres R (1979) Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 233:E214–E223

    Google Scholar 

  19. Ford ES, Giles WH, Dietz WH (2002) Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA 287:356–359

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Hess.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, B. Acid–base metabolism: implications for kidney stosne formation. Urol Res 34, 134–138 (2006). https://doi.org/10.1007/s00240-005-0026-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00240-005-0026-0

Keywords

Navigation