Skip to main content
Log in

Contribution of BKCa-Channel Activity in Human Cardiac Fibroblasts to Electrical Coupling of Cardiomyocytes-Fibroblasts

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Cardiac fibroblasts are involved in the maintenance of myocardial tissue structure. However, little is known about ion currents in human cardiac fibroblasts. It has been recently reported that cardiac fibroblasts can interact electrically with cardiomyocytes through gap junctions. Ca2+-activated K+ currents (I K[Ca]) of cultured human cardiac fibroblasts were characterized in this study. In whole-cell configuration, depolarizing pulses evoked I K(Ca) in an outward rectification in these cells, the amplitude of which was suppressed by paxilline (1 μM) or iberiotoxin (200 nM). A large-conductance, Ca2+-activated K+ (BKCa) channel with single-channel conductance of 162 ± 8 pS was also observed in human cardiac fibroblasts. Western blot analysis revealed the presence of α-subunit of BKCa channels. The dynamic Luo-Rudy model was applied to predict cell behavior during direct electrical coupling of cardiomyocytes and cardiac fibroblasts. In the simulation, electrically coupled cardiac fibroblasts also exhibited action potential; however, they were electrically inert with no gap-junctional coupling. The simulation predicts that changes in gap junction coupling conductance can influence the configuration of cardiac action potential and cardiomyocyte excitability. I k(Ca) can be elicited by simulated action potential waveforms of cardiac fibroblasts when they are electrically coupled to cardiomyocytes. This study demonstrates that a BKCa channel is functionally expressed in human cardiac fibroblasts. The activity of these BKCa channels present in human cardiac fibroblasts may contribute to the functional activities of heart cells through transfer of electrical signals between these two cell types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  • Amberg G.C., Bonev A.D., Rossow C.F., Nelson M.T., Santana L.F. 2003. Modulation of the molecular composition of large conductance, Ca2+ activated K+ channels in vascular smooth muscle during hypertension. J. Clin. Invest. 112:717–724

    Article  PubMed  CAS  Google Scholar 

  • Butler A., Tsunoda S., McCobb D.P., Wei A., Salkoff L. 1993. mSlo, a complex mouse gene encoding “maxi” calcium-activated potassium channels. Science 261:221–224

    Article  PubMed  CAS  Google Scholar 

  • Camelliti P., Borg T., Kohl P. 2005. Structural and functional characterization of cardiac fibroblasts. Cardiovasc. Res. 65:40–51

    Article  PubMed  CAS  Google Scholar 

  • Camelliti P., Green C.R., LeGrice I., Kohl P. 2004. Fibroblast network in rabbit sinoatrial node: Structural and functional identification of homogeneous and heterogeneous cell coupling. Circ. Res. 94:828–835

    Article  PubMed  CAS  Google Scholar 

  • Chilton L., Ohya S., Freed D., George E., Drobic V., Shibukawa Y., Maccannell K.A., Imaizumi Y., Clark R.B., Dixon I.M., Giles W.R. 2005. K+ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts. Am. J. Physiol. 288:H2931–H2939

    CAS  Google Scholar 

  • Clancy C.E., Rudy Y. 2001. Cellular consequences of HERG mutations in the long QT syndrome: Precursors to sudden cardiac death. Cardiovasc. Res. 50:301–313

    Article  PubMed  CAS  Google Scholar 

  • El Chemaly A., Guinamard R., Demion M., Fares N., Jebara V., Faivre J.F., Bois P. 2006. A voltage-activated proton current in human cardiac fibroblasts. Biochem. Biophys. Res. Common. 340: 512–516

    Article  CAS  Google Scholar 

  • Ermentrout G.B. 2002. Simulating, Analyzing, and Animating Dynamical System: A Guide to XPPAUT for Researchers and Students. Society for Industrial and Applied Mathematics (SIAM), Philadelphia

    Google Scholar 

  • Gaudesius G., Miragoli M., Thomas S.P., Rohr S. 2003. Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circ. Res. 93:421–429

    Article  PubMed  CAS  Google Scholar 

  • Guinamard R., Chatelier A., Demion M., Potreau D., Patri S., Rahmati M., Bois P. 2004. Functional characterization of a Ca2+-activated non-selective cation channel in human atrial cardiomyocytes. J. Physiol. 558:75–83

    Article  PubMed  CAS  Google Scholar 

  • Horrigan F.T., Cui J., Aldrich R.W. 1999. Allosteric voltage gating of potassium channels I. Mslo ionic currents in the absence of Ca2+. J. Gen. Physiol. 114:277–304

    Article  PubMed  CAS  Google Scholar 

  • Kamkin A., Kiselva I., Lozinsky I., Scholz H. 2005. Electrical interaction of mechanosensitive fibroblasts and myocytes in the heart. Basic Res. Cardiol. 100:337–345

    Article  PubMed  CAS  Google Scholar 

  • Keener J.P., Keizer J.E. 2002. Fast and slow time scales. In: C.P. Fall, E.S. Marland, J.M. Wagner, J.J. Tyson, editors. Computational Cell Biology. Springer-Verlag, New York pp. 77–100

    Google Scholar 

  • Kizana E., Ginn S.L., Allen D.G., Ross D.L., Alexander I.E. 2005. Fibroblasts can be genetically modified to produce excitable cells capable of electrical coupling. Circulation 111:394–398

    Article  PubMed  Google Scholar 

  • Kohl P., Camelliti P., Burton F.L., Smith G.L. 2005. Electrical coupling of fibroblasts and myocytes: Relevance for cardiac propagation. J. Electrocardiol. 38(Suppl. 4):45–50

    Article  PubMed  Google Scholar 

  • Kohl P., Hunter P., Noble D. 1999. Stretch-induced changes in heart rate and rhythm: Clinical observations, experiments and mathematical models. Prog. Biophys. Mol. Biol. 71:91–139

    Article  PubMed  CAS  Google Scholar 

  • Lin M.W., Yang S.R., Huang M.H., Wu S.N. 2004. Stimulatory actions of caffeic acid phenethyl ester, a known inhibitor of NF-κB activation, on Ca2+-activated K+ current in pituitary GH3 cells. J. Biol. Chem. 279:26885–26892

    Article  PubMed  CAS  Google Scholar 

  • Lippiat J.D., Standen N.B., Davies N.W. 2000. A residue in the intracellular vestibule of the pore is critical for gating and permeation in Ca2+-activated K+ (BKCa) channels. J. Physiol. 529:131–138

    Article  PubMed  CAS  Google Scholar 

  • Lo Y.C., Yang S.R., Huang M.H., Liu Y.C., Wu S.N. 2005. Characterization of chromanol 293B-induced block of the delayed rectifier K+ current in heart-derived H9c2 cells. Life Sci. 76:2275–2286

    Article  PubMed  CAS  Google Scholar 

  • Lo Y.K., Wu S.N., Lee C.T., Li H.F., Chiang H.T. 2001. Characterization of action potential waveform-evoked L-type calcium currents in pituitary GH3 cells. Pflügers Arch. 442: 547–557

    Article  PubMed  CAS  Google Scholar 

  • Luo C.H., Rudy Y. 1994. A dynamic model of the cardiac ventricular action potential. I. Simulation of ionic currents and concentration changes. Circ. Res. 74:1071–1096

    PubMed  CAS  Google Scholar 

  • Moczydlowski E., Latorre R. 1983. Gating kinetics of Ca2+-activated K+ channels from rat muscle incorporated into planar lipid bilayers. Evidence for two voltage-dependent Ca2+ binding reactions. J. Gen. Physiol. 82:511–542

    Article  PubMed  CAS  Google Scholar 

  • Peng J., Gurantz D., Tran V., Cowling R.T., Greenberg B.H. 2002. Tumor necrosis factor-alpha-induced AT1 receptor upregulation enhances angiotensin II-mediated cardiac fibroblast responses that favor fibrosis. Circ. Res. 91:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Peracchia C. 2004. Chemical gating of gap junction channels: Roles of calcium, pH and calmodulin. Biochem. Biophys. Acta 1662:61–80

    Article  PubMed  CAS  Google Scholar 

  • Rohr S. 2004. Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc. Res. 62:309–322

    Article  PubMed  CAS  Google Scholar 

  • Rothberg B.S., Magleby K.L. 1999. Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism. J. Gen. Physiol. 114:93–124

    Article  PubMed  CAS  Google Scholar 

  • Salameh A., Frenzel C., Boldt A., Rassler B., Glawe I., Schulte J., Muhlberg K., Zimmer H.G., Pfeiffer D., Dhein S. 2006. Subchronic alpha- and beta-adrenergic regulation of cardiac gap junction protein expression. FASEB J. 20:365–367

    PubMed  CAS  Google Scholar 

  • Sato T., Saito T., Saegusa N., Nakaya H. 2005. Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: A mechanism of the cardioprotective effect and modulation by protein kinase A. Circulation 111:198–203

    Article  PubMed  CAS  Google Scholar 

  • Silva J., Rudy Y. 2005. Subunit interaction determines I Ks participation in cardiac repolarization and repolarization reserve. Circulation 112:1384–1391

    Article  PubMed  Google Scholar 

  • Tanaka Y., Meera P., Song M., Knaus H.G., Toro L. 1997. Molecular constituents of maxi KCa channels in human coronary smooth muscle: Predominant α + β subunit complexes. J. Physiol. 502:545–557

    Article  PubMed  CAS  Google Scholar 

  • ten Tusscher K.H., Noble D., Noble P.J., Panfilov A.V. 2004. A model for human ventricular tissue. Am. J. Physiol. Heart Circ. Physiol. 286: H1573–1589.

    Article  PubMed  CAS  Google Scholar 

  • Wang W., Watanabe M., Nakamura T., Kudo Y., Ochi R. 1999. Properties and expression of Ca2+-activated K+ channels in H9c2 cells derived from rat ventricle. Am. J. Physiol. 276:H1559–H1566

    PubMed  CAS  Google Scholar 

  • Wang Y.J., Liu Y.C., Chang H.D., Wu S.N. 2006. Diosgenin, a plant-derived sapogenin, stimulates Ca2+-activated K+ current in human cortical HCN-1A neuronal cells. Planta Med. 72:430–436

    Article  PubMed  CAS  Google Scholar 

  • Wilson J.R., Duncan N.A., Giles W.R., Clark R.B. 2004. A voltage-dependent K+ current contributes to membrane potential of acutely isolated canine articular chondrocytes. J. Physiol. (London). 557: 93–104.

    Article  CAS  Google Scholar 

  • Wu S.N. 2003. Large-conductance Ca2+-activated K+ channels: Physiological role and pharmacology. Curr. Med. Chem. 10:1241–1253

    Article  Google Scholar 

  • Wu S.N., Chiang H.T., Chang F.R., Liaw C.C., Wu Y.C. 2002. Stimulatory effects of squamocin, an annonaceous acetogenin, Ca2+-acitvated K+ current in cultured smooth muscle cells of human coronary artery. Chem. Res. Toxicol. 16:15–22

    Article  Google Scholar 

  • Wu S.N., Lin P.H., Hsieh K.S., Liu Y.C., Chiang H.T. 2003. Behavior of nonselective cation channels and large-conductance Ca2+-activated K+ channels induced by dynamic changes in membrane stretch in cultured smooth muscle cells of human coronary artery. J. Cardiovasc. Electrophysiol. 14:44–51

    Article  PubMed  Google Scholar 

  • Wu S.N., Liu S.I., Hwang T.L. 1998. Activation of muscarinic K+ channels by extracellular ATP and UTP in rat atrial myocytes. J. Cardiovasc. Pharmacol. 31:203–211

    Article  PubMed  CAS  Google Scholar 

  • Xu Y., Tuteja D., Zhang Z., Xu D., Zhang Y., Rodriguez J., Nie L., Tuxson H.R., Young J.N., Glatter K.A., Vázquez A.E., Yamoah E.N., Chiamvimonvat N.C. 2003. Molecular identification and functional roles of a Ca2+-activated K+ channel in human and mouse hearts. J. Biol. Chem. 278:49085–49094

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank Han-Dong Chang for technical assistance. This work was partly aided by grants from the National Science Council (NSC-93-2320B-006-055 and NSC-94-2320B-006-019), Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Nan Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, YJ., Sung, R.J., Lin, MW. et al. Contribution of BKCa-Channel Activity in Human Cardiac Fibroblasts to Electrical Coupling of Cardiomyocytes-Fibroblasts. J Membrane Biol 213, 175–185 (2006). https://doi.org/10.1007/s00232-007-0027-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-007-0027-8

Keywords

Navigation