Skip to main content

Advertisement

Log in

Metformin Alleviates the Bone Loss Induced by Ketogenic Diet: An In Vivo Study in Mice

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Metformin (Met), an anti-diabetes drug, has also shown therapeutic effects for ovariectomy-induced (OVX) osteoporosis. However, similar effects against bone loss induced by a ketogenic diet (KD) have not been tested. This study was aimed to evaluate the microarchitectures and biomechanics of KD-induced osteoporosis with and without administration of Met, and compare the effect of Met on bone loss induced by KD with OVX. Forty female C57BL/6J mice were randomly divided into Sham, OVX, OVX + Met (100 mg/kg/day), KD (3:1 ratio of fat to carbohydrate and protein), and KD + Met (100 mg/kg/day) groups. After 12 weeks, the bone mass and biomechanics were measured in distal cancellous bone and in mid-shaft cortical bone of the femur. The activities of serum alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP), together with immunohistochemistry staining of osteocalcin (OCN) and TRAP, were evaluated. Both OVX and KD induced significant bone loss and compromised biomechanical properties in the cancellous bone, but no effect was found in cortical bone. The administration of Met increased the cancellous bone volume fraction (BV/TV) from 3.78 to 5.23% following the OVX and from 4.04 to 6.33% following the KD, it also enhanced the compressive stiffness from 47 to 160 N/mm following the OVX and from 35 to 340 N/mm with the KD. Met effectively increased serum ALP in the KD group while decreased serum TRAP in the OVX group, but up-regulated expression of OCN and down-regulated expression of TRAP in both OVX and KD groups. The present study demonstrated that Met effectively attenuated the cancellous bone loss induced by KD and maintained the biomechanical properties of long bones, providing evidence for Met as a treatment of by KD-induced osteoporosis in teenage skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kossoff EH, Zupec-Kania BA, Rho JM (2009) Ketogenic diets: an update for child neurologists. J Child Neurol 24:979–988

    Article  PubMed  Google Scholar 

  2. Stafstrom CE, Rho JM (2012) The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 3:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Paoli A, Rubini A, Volek JS, Grimaldi KA (2013) Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur J Clin Nutr 67:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang X, Wu X, Liu Q, Kong G, Zhou J, Jiang J, Wu X, Huang Z, Su W, Zhu Q (2017) Ketogenic metabolism inhibits histone deacetylase (HDAC) and reduces oxidative stress after spinal cord injury in rats. Neuroscience 366:36–43

    Article  CAS  PubMed  Google Scholar 

  5. Kong G, Huang Z, Ji W, Wang X, Liu J, Wu X, Huang Z, Li R, Zhu Q (2017) The ketone metabolite beta-hydroxybutyrate attenuates oxidative stress in spinal cord injury by suppression of class I histone deacetylases. J Neurotrauma 34:2645–2655

    Article  PubMed  Google Scholar 

  6. Hahn TJ, Halstead LR, DeVivo DC (1979) Disordered mineral metabolism produced by ketogenic diet therapy. Calcif Tissue Int 28:17–22

    Article  CAS  PubMed  Google Scholar 

  7. Bergqvist AG, Schall JI, Stallings VA, Zemel BS (2008) Progressive bone mineral content loss in children with intractable epilepsy treated with the ketogenic diet. Am J Clin Nutr 88:1678–1684

    Article  CAS  PubMed  Google Scholar 

  8. Bielohuby M, Matsuura M, Herbach N, Kienzle E, Slawik M, Hoeflich A, Bidlingmaier M (2010) Short-term exposure to low-carbohydrate, high-fat diets induces low bone mineral density and reduces bone formation in rats. J Bone Miner Res 25:275–284

    Article  CAS  PubMed  Google Scholar 

  9. Wu X, Huang Z, Wang X, Fu Z, Liu J, Huang Z, Kong G, Xu X, Ding J, Zhu Q (2017) Ketogenic diet compromises both cancellous and cortical bone mass in mice. Calcif Tissue Int 101:412–421

    Article  CAS  PubMed  Google Scholar 

  10. Maruthur NM, Tseng E, Hutfless S, Wilson LM, Suarez-Cuervo C, Berger Z, Chu Y, Iyoha E, Segal JB, Bolen S (2016) Diabetes medications as monotherapy or metformin-based combination therapy for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med 164:740–751

    Article  PubMed  Google Scholar 

  11. Vestergaard P, Rejnmark L, Mosekilde L (2005) Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia 48:1292–1299

    Article  CAS  PubMed  Google Scholar 

  12. Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419

    Article  CAS  PubMed  Google Scholar 

  13. Cortizo AM, Sedlinsky C, McCarthy AD, Blanco A, Schurman L (2006) Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol 536:38–46

    Article  CAS  PubMed  Google Scholar 

  14. Zhen D, Chen Y, Tang X (2010) Metformin reverses the deleterious effects of high glucose on osteoblast function. J Diabetes Complications 24:334–344

    Article  PubMed  Google Scholar 

  15. Gao Y, Li Y, Xue J, Jia Y, Hu J (2010) Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol 635:231–236

    Article  CAS  PubMed  Google Scholar 

  16. Mai QG, Zhang ZM, Xu S, Lu M, Zhou RP, Zhao L, Jia CH, Wen ZH, Jin DD, Bai XC (2011) Metformin stimulates osteoprotegerin and reduces RANKL expression in osteoblasts and ovariectomized rats. J Cell Biochem 112:2902–2909

    Article  CAS  PubMed  Google Scholar 

  17. Reeves PG (1997) Components of the AIN-93 diets as improvements in the AIN-76A diet. J Nutr 127:838S–841S

    Article  CAS  PubMed  Google Scholar 

  18. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486

    Article  PubMed  Google Scholar 

  19. Arias-Moreno AJ, Ito K, van Rietbergen B (2016) Micro-Finite Element analysis will overestimate the compressive stiffness of fractured cancellous bone. J Biomech 49:2613–2618

    Article  PubMed  Google Scholar 

  20. Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15:175–191

    Article  CAS  PubMed  Google Scholar 

  21. Qi S, Zheng H (2017) Combined effects of phytoestrogen genistein and silicon on ovariectomy-induced bone loss in rat. Biol Trace Elem Res 177:281–287

    Article  CAS  PubMed  Google Scholar 

  22. Unsal F, Sonmez MF (2014) The effects of ovariectomy on ghrelin expression in the rat uterus. Adv Clin Exp Med 23:363–370

    Article  PubMed  Google Scholar 

  23. Li M, Shen Y, Wronski TJ (1997) Time course of femoral neck osteopenia in ovariectomized rats. Bone 20:55–61

    Article  CAS  PubMed  Google Scholar 

  24. Danielsen CC, Mosekilde L, Svenstrup B (1993) Cortical bone mass, composition, and mechanical properties in female rats in relation to age, long-term ovariectomy, and estrogen substitution. Calcif Tissue Int 52:26–33

    Article  CAS  PubMed  Google Scholar 

  25. Sasaki H, Miyakoshi N, Kasukawa Y, Maekawa S, Noguchi H, Kamo K, Shimada Y (2010) Effects of combination treatment with alendronate and vitamin K(2) on bone mineral density and strength in ovariectomized mice. J Bone Miner Metab 28:403–409

    Article  CAS  PubMed  Google Scholar 

  26. Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91

    Article  CAS  PubMed  Google Scholar 

  27. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD, Newgard CB, Farese RJ, de Cabo R, Ulrich S, Akassoglou K, Verdin E (2013) Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Liu Q, Zhou J, Wu X, Zhu Q (2017) β Hydroxybutyrate levels in serum and cerebrospinal fluid under ketone body metabolism in rats. Exp Anim 66:177–182

    Article  PubMed  PubMed Central  Google Scholar 

  29. Frommelt L, Bielohuby M, Stoehr BJ, Menhofer D, Bidlingmaier M, Kienzle E (2014) Effects of low-carbohydrate, high-fat diets on apparent digestibility of minerals and trace elements in rats. Nutrition 30:869–875

    Article  CAS  PubMed  Google Scholar 

  30. Alagiakrishnan K, Sankaralingam S, Ghosh M, Mereu L, Senior P (2013) Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease. Discov Med 16:277–286

    PubMed  Google Scholar 

  31. Cabreiro F, Au C, Leung KY, Vergara-Irigaray N, Cocheme HM, Noori T, Weinkove D, Schuster E, Greene ND, Gems D (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153:228–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Landman GW, Kleefstra N, van Hateren KJ, Groenier KH, Gans RO, Bilo HJ (2010) Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care 33:322–326

    Article  CAS  PubMed  Google Scholar 

  33. Chandra A, Lin T, Tribble MB, Zhu J, Altman AR, Tseng WJ, Zhang Y, Akintoye SO, Cengel K, Liu XS, Qin L (2014) PTH1-34 alleviates radiotherapy-induced local bone loss by improving osteoblast and osteocyte survival. Bone 67:33–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Raisz LG (1999) Physiology and pathophysiology of bone remodeling. Clin Chem 45:1353–1358

    CAS  PubMed  Google Scholar 

  35. Bahlous A, Kalai E, Hadj SM, Bouzid K, Zerelli L (2006) Biochemical markers of bone remodeling: recent data of their applications in managing postmenopausal osteoporosis. Tunis Med 84:751–757

    PubMed  Google Scholar 

  36. Hwang YH, Son YJ, Paik MJ, Yee ST (2017) Effects of diisononyl phthalate on osteopenia in intact mice. Toxicol Appl Pharmacol 334:120–128

    Article  CAS  PubMed  Google Scholar 

  37. Greenblatt MB, Tsai JN, Wein MN (2017) Bone turnover markers in the diagnosis and monitoring of metabolic bone disease. Clin Chem 63:464–474

    Article  CAS  PubMed  Google Scholar 

  38. Lin S, Huang J, Fu Z, Liang Y, Wu H, Xu L, Sun Y, Lee WY, Wu T, Qin L, Cui L, Li G (2015) The effects of atorvastatin on the prevention of osteoporosis and dyslipidemia in the high-fat-fed ovariectomized rats. Calcif Tissue Int 96:541–551

    Article  CAS  PubMed  Google Scholar 

  39. Zhao Y, Zou B, Shi Z, Wu Q, Chen GQ (2007) The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials 28:3063–3073

    Article  CAS  PubMed  Google Scholar 

  40. Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608

    Article  CAS  PubMed  Google Scholar 

  41. Komori T (2015) Animal models for osteoporosis. Eur J Pharmacol 759:287–294

    Article  CAS  PubMed  Google Scholar 

  42. Comelekoglu U, Mutlu H, Yalin S, Bagis S, Yildiz A, Ogenler O (2007) Determining the biomechanical quality of normal and osteoporotic bones in rat femora through biomechanical test and finite element analysis. Acta Orthop Traumatol Turc 41:53–57

    PubMed  Google Scholar 

  43. van Eijden TM, van Ruijven LJ, Giesen EB (2004) Bone tissue stiffness in the mandibular condyle is dependent on the direction and density of the cancellous structure. Calcif Tissue Int 75:502–508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Guangdong Province Natural Science Foundation of China (No. 2015A030313276) and Dean Foundation of Nanfang Hospital (No. 2016Z021).

Author information

Authors and Affiliations

Authors

Contributions

QZ and QL designed the experiments. QL, ZY, and XX conducted the animal experiments. QL, ZY, JL, and YL collected the samples. QL, YZ, XX, XW and ZH measured and collected the data. ZH, GK, JD, RL and JL completed the data analysis. QL wrote the manuscript, and XX and QZ revised the manuscript.

Corresponding author

Correspondence to Qingan Zhu.

Ethics declarations

Conflict of interest

Qi Liu, Xiaolin Xu, Zhou Yang, Yapu Liu, Xiuhua Wu, Zhiping Huang, Junhao Liu, Zucheng Huang, Ganggang Kong, Jianyang Ding, Rong Li, Junyu Lin, and Qingan Zhu declare no conflicts of interest.

Human and Animal Rights and Informed Consent

The present study was approved by the Animal Experiments Ethics Committee of Southern Medical University. The animal procedures were conducted in accordance with the Guidelines of Caring for Laboratory Animals by the Ministry of Science and Technology of the People’s Republic of China. Surgery was performed under anesthesia, and all efforts were made to minimize suffering.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Xu, X., Yang, Z. et al. Metformin Alleviates the Bone Loss Induced by Ketogenic Diet: An In Vivo Study in Mice. Calcif Tissue Int 104, 59–69 (2019). https://doi.org/10.1007/s00223-018-0468-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0468-3

Keywords

Navigation