Skip to main content

Advertisement

Log in

Hyperosteoidosis and Hypermineralization in the Same Bone: Bone Tissue Analyses in a Boy with a Homozygous BMP1 Mutation

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Recently, homozygous mutations in BMP1 were identified as a cause of bone fragility in children with high areal bone mineral density. We examined iliac bone tissue from a 12-year-old boy with a homozygous mutation that leads to a p.Gly12Arg change in the signal peptide of BMP1, an enzyme that cleaves C-propeptide off the procollagen type I molecule. Histomorphometric analyses revealed marked hyperosteoidosis, with osteoid volume per bone volume at approximately 11 SD above the mean value for controls. At the same time, quantitative backscattered electron imaging showed drastic hypermineralization of mineralized bone matrix. CaPeak, representing the most frequently observed calcium content of mineralized matrix in trabecular bone, was 9 SD above the mean for the control population, corresponding to a 21 % higher calcium content in the patient specimen than in the average control sample. These results are similar to those that were previously reported in an individual who had a mutation in the C-propeptide cleavage site of procollagen type I. It thus appears that disturbed C-propeptide cleavage impairs mineralization in two ways: first, the onset of mineralization is delayed, leading to an increased amount of unmineralized osteoid, and second, once mineralization starts, too much mineral is incorporated into the bone matrix, resulting in hypermineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Forlino A, Cabral WA, Barnes AM, Marini JC (2011) New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 7:540–557

    Article  PubMed  CAS  Google Scholar 

  2. Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Korkko J, Prockop DJ, De Paepe A, Coucke P, Symoens S, Glorieux FH, Roughley PJ, Lund AM, Kuurila-Svahn K, Hartikka H, Cohn DH, Krakow D, Mottes M, Schwarze U, Chen D, Yang K, Kuslich C, Troendle J, Dalgleish R, Byers PH (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 28:209–221

    Article  PubMed  CAS  Google Scholar 

  3. Eyre DR, Weis MA (2013) Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif Tissue Int 93:338–347

    Google Scholar 

  4. Asharani PV, Keupp K, Semler O, Wang W, Li Y, Thiele H, Yigit G, Pohl E, Becker J, Frommolt P, Sonntag C, Altmuller J, Zimmermann K, Greenspan DS, Akarsu NA, Netzer C, Schonau E, Wirth R, Hammerschmidt M, Nurnberg P, Wollnik B, Carney TJ (2012) Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am J Hum Genet 90:661–674

    Article  PubMed  CAS  Google Scholar 

  5. Rauch F, Plotkin H, Zeitlin L, Glorieux FH (2003) Bone mass, size, and density in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate therapy. J Bone Miner Res 18:610–614

    Article  PubMed  CAS  Google Scholar 

  6. Kromeyer-Hauschild K, Wabitsch M, Kunze D, Geller F, Geiss HC, Hesse V, von Hippel A, Jaeger U, Johnsen D, Korte W, Menner K, Müller G, Müller JM, Niemann-Pilatus A, Remer T, Schaefer F, Wittchen HU, Zabransky S, Zellner K, Ziegler A, Hebebrand J (2001) Perzentile für den Body-mass-Index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 149:807–818

    Article  Google Scholar 

  7. Rauch F, Schoenau E (2005) Peripheral quantitative computed tomography of the distal radius in young subjects—new reference data and interpretation of results. J Musculoskelet Neuronal Interact 5:119–126

    PubMed  CAS  Google Scholar 

  8. Rauch F, Georg M, Stabrey A, Neu C, Blum WF, Remer T, Manz F, Schoenau E (2002) Collagen markers deoxypyridinoline and hydroxylysine glycosides: pediatric reference data and use for growth prediction in growth hormone-deficient children. Clin Chem 48:315–322

    PubMed  CAS  Google Scholar 

  9. Crofton PM, Wade JC, Taylor MR, Holland CV (1997) Serum concentrations of carboxyl-terminal propeptide of type I procollagen, amino-terminal propeptide of type III procollagen, cross-linked carboxyl-terminal telopeptide of type I collagen, and interrelationships in schoolchildren. Clin Chem 43:1577–1581

    PubMed  CAS  Google Scholar 

  10. Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, Parfitt AM (2000) Normative data for iliac bone histomorphometry in growing children. Bone 26:103–109

    Article  PubMed  CAS  Google Scholar 

  11. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  12. Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326

    Article  PubMed  CAS  Google Scholar 

  13. Fratzl-Zelman N, Roschger P, Misof BM, Pfeffer S, Glorieux FH, Klaushofer K, Rauch F (2009) Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone 44:1043–1048

    Article  PubMed  CAS  Google Scholar 

  14. Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42:456–466

    Article  PubMed  CAS  Google Scholar 

  15. Rauch F, Schoenau E (2001) Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J Bone Miner Res 16:597–604

    Article  PubMed  CAS  Google Scholar 

  16. Lindahl K, Barnes AM, Fratzl-Zelman N, Whyte MP, Hefferan TE, Makareeva E, Brusel M, Yaszemski MJ, Rubin CJ, Kindmark A, Roschger P, Klaushofer K, McAlister WH, Mumm S, Leikin S, Kessler E, Boskey AL, Ljunggren O, Marini JC (2011) COL1 C-propeptide cleavage site mutations cause high bone mass osteogenesis imperfecta. Hum Mutat 32:598–609

    Article  PubMed  CAS  Google Scholar 

  17. Parfitt AM (2003) Renal bone disease: a new conceptual framework for the interpretation of bone histomorphometry. Curr Opin Nephrol Hypertens 12:387–403

    Article  PubMed  Google Scholar 

  18. Martinez-Glez V, Valencia M, Caparros-Martin JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D, Giunta C, Lapunzina P, Ruiz-Perez VL (2012) Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 33:343–350

    Article  PubMed  CAS  Google Scholar 

  19. Weber M, Roschger P, Fratzl-Zelman N, Schoberl T, Rauch F, Glorieux FH, Fratzl P, Klaushofer K (2006) Pamidronate does not adversely affect bone intrinsic material properties in children with osteogenesis imperfecta. Bone 39:616–622

    Article  PubMed  CAS  Google Scholar 

  20. Rauch F, Travers R, Plotkin H, Glorieux FH (2002) The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Investig 110:1293–1299

    PubMed  CAS  Google Scholar 

  21. Edouard T, Glorieux FH, Rauch F (2011) Relationship between vitamin D status and bone mineralization, mass, and metabolism in children with osteogenesis imperfecta: histomorphometric study. J Bone Miner Res 26:2245–2251

    Article  PubMed  CAS  Google Scholar 

  22. Rauch F, Travers R, Glorieux FH (2006) Pamidronate in children with osteogenesis imperfecta: histomorphometric effects of long-term therapy. J Clin Endocrinol Metab 91:511–516

    Article  PubMed  CAS  Google Scholar 

  23. Roschger P, Fratzl-Zelman N, Misof BM, Glorieux FH, Klaushofer K, Rauch F (2008) Evidence that abnormal high bone mineralization in growing children with osteogenesis imperfecta is not associated with specific collagen mutations. Calcif Tissue Int 82:263–270

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

All procedures were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from the legal guardians. We thank Mark Lepik for preparation of the figures. We additionally thank Prof. Dr. Troebs from Marienhospital Herne for taking the bone biopsy during surgery. Frank Rauch received support from the Chercheur-Boursier Clinicien program of the Fonds de Recherche du Québec-Santé. In addition, this study was supported by the Shriners of North America, and Paul Roschger and Klaus Klaushofer were supported by the AUVA (Research Funds of the Austrian Workers Compensation Board), and the WGKK (Viennese Sickness Insurance Funds).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Hoyer-Kuhn.

Additional information

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoyer-Kuhn, H., Semler, O., Schoenau, E. et al. Hyperosteoidosis and Hypermineralization in the Same Bone: Bone Tissue Analyses in a Boy with a Homozygous BMP1 Mutation. Calcif Tissue Int 93, 565–570 (2013). https://doi.org/10.1007/s00223-013-9799-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-013-9799-2

Keywords

Navigation