Skip to main content

Advertisement

Log in

Circulating Sclerostin and Dickkopf-1 (DKK1) in Predialysis Chronic Kidney Disease (CKD): Relationship with Bone Density and Arterial Stiffness

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Abnormalities of bone metabolism and increased vascular calcification are common in chronic kidney disease (CKD) and important causes of morbidity and mortality. The Wnt signaling pathway may play a role in the bone and vascular disturbances seen in CKD, termed collectively “CKD–MBD.” The aim of the study was to investigate the possible association of circulating concentrations of the secreted Wnt signaling inhibitors DKK1 and sclerostin with BMD and arterial stiffness in predialysis CKD. Seventy-seven patients (48 M, 29 F), mean age 57 (SD = 14) years with CKD stages 3B (n = 32) and 4 (n = 45) were studied. Sclerostin, DKK1, PTH, and 1,25(OH)2D were analyzed. BMD was measured at the lumbar spine (LS), femoral neck (FN), total hip (TH), and forearm (FARM). Arterial stiffness index was determined by contour analysis of digital volume pulse (SIDVP). There was a positive correlation between sclerostin and age (r = 0.47, p < 0.000). Sclerostin was higher in men than women (p = 0.013). Following correction for age and gender, there was a negative association between GFR and sclerostin (p = 0.002). We observed a positive association between sclerostin and BMD at the LS (p = 0.0001), FN (p = 0.004), and TH (p = 0.002). In contrast, DKK1 was negatively associated with BMD at the FN (p = 0.038). A negative association was seen between DKK1 and SIDVP (p = 0.027). Our data suggest that the Wnt pathway may play a role in CKD–MBD. Prospective studies are required to establish the clinical relevance of sclerostin and DKK1 as serological markers in CKD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Cannata-Andia JB, Rodriguez-Garcia M, Carrillo-Lopez N, Naver-Diaz M, Diaz-Lopez B (2006) Vascular calcifications: pathogenesis, management and impact on clinical outcomes. J Am Soc Nephrol 17:S267–S273

    Article  PubMed  Google Scholar 

  2. London GM, Marchais SJ, Guerin AP, Metivier F (2002) Impairment of arterial function in chronic kidney disease: prognostic impact and therapeutic approach. Nephrol Dial Transplant 17(Suppl 11):13–15

    Article  PubMed  CAS  Google Scholar 

  3. Shao JS, Cheng SL, Sadhu J, Towler DA (2010) Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 55:579–592

    Article  PubMed  CAS  Google Scholar 

  4. Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536

    Article  PubMed  CAS  Google Scholar 

  5. Shao JS, Cai J, Towler DA (2006) Molecular mechanisms of vascular calcification: lessons learned from the aorta. Arterioscler Thromb Vasc Biol 26:1423–1430

    Article  PubMed  CAS  Google Scholar 

  6. Towler DA, Shao JS, Cheng SL, Pingsterhaus JM, Loewy A (2006) Osteogenic regulation of vascular calcification. Ann NY Acad Sci 1068:327–333

    Article  PubMed  CAS  Google Scholar 

  7. Shao JS, Cheng SL, Pingsterhaus JM, Charlton-Kachigian N, Loewy AP, Towler DA (2005) Msx2 promotes cardiovascular calcification by activating paracrine Wnt signals. J Clin Invest 115:1210–1220

    PubMed  CAS  Google Scholar 

  8. Román-García P, Carrillo-López N, Fernández-Martín JL, Naves-Díaz M, Ruiz-Torres MP, Cannata-Andía JB (2010) High phosphorus diet induces vascular calcification, a related decrease in bone mass and changes in the aortic gene expression. Bone 46(1):121–128

    Article  PubMed  Google Scholar 

  9. Ueland T, Otterdal K, Lekva T, Halvorsen B, Gabrielsen A, Sandberg WJ, Paulsson-Berne G, Pedersen TM, Folkersen L, Gullestad L, Oie E, Hansson GK, Aukrust P (2009) Dickkopf-1 enhances inflammatory interaction between platelets and endothelial cells and shows increased expression in atherosclerosis. Arterioscler Thromb Vasc Biol 29(8):1228–1234

    Article  PubMed  CAS  Google Scholar 

  10. Zhu D, Mackenzie NC, Millán JL, Farquharson C, MacRae VE (2011) The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS One 6(5):e19595

    Article  PubMed  CAS  Google Scholar 

  11. Baron R, Rawadi G (2007) Targeting the Wnt/beta-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148(6):2635–2643

    Article  PubMed  CAS  Google Scholar 

  12. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23):6267–6276

    Article  PubMed  CAS  Google Scholar 

  13. Mödder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, Melton LJ III, Khosla S (2011) Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 26(2):373–379

    Article  PubMed  Google Scholar 

  14. Polyzos SA, Anastasilakis AD, Bratengeier C, Woloszczuk W, Papatheodorou A, Terpos E (2012) Serum sclerostin levels positively correlate with lumbar spinal bone mineral density in postmenopausal women—the six-month effect of risedronate and teriparatide. Osteoporos Int 23(3):1171–1176

    Article  PubMed  CAS  Google Scholar 

  15. Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, Pulvirenti I, Hawa G, Tringali G, Fiore CE (2010) Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95(5):2248–2253

    Article  PubMed  CAS  Google Scholar 

  16. Cejka D, Herberth J, Branscum AJ, Fardo DW, Monier-Faugere MC, Diarra D, Haas M, Malluche HH (2011) Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol 6(4):877–882

    Article  PubMed  CAS  Google Scholar 

  17. Butler JS, Murray DW, Hurson CJ, O’Brien J, Doran PP, O’Byrne JM (2011) The role of Dkk1 in bone mass regulation: correlating serum Dkk1 expression with bone mineral density. J Orthop Res 29(3):414–418

    Article  PubMed  Google Scholar 

  18. Kaiser M, Mieth M, Liebisch P, Oberländer R, Rademacher J, Jakob C, Kleeberg L, Fleissner C, Braendle E, Peters M, Stover D, Sezer O, Heider U (2008) Serum concentrations of DKK1 correlate with the extent of bone disease in patients with multiple myeloma. Eur J Haematol 80(6):490–494

    Article  PubMed  CAS  Google Scholar 

  19. Pendás-Franco N, Aguilera O, Pereira F, González-Sancho JM, Muñoz A (2008) Vitamin D and Wnt/beta-catenin pathway in colon cancer: role and regulation of DICKKOPF genes. Anticancer Res 28(5A):2613–2623

    PubMed  Google Scholar 

  20. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van der Heide D, Landewe R, Lacey D, Richards WG, Schett G (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13(2):156–163

    Article  PubMed  CAS  Google Scholar 

  21. Archibald G, Bartlett W, Brown A, Christie B, Elliott A, Griffith K, Pound S, Rappaport I, Robertson D, Semple Y, Slane P, Whitworth C, Williams B (2007) UK Consensus Conference on early chronic kidney disease—6 and 7 February 2007. Nephrol Dial Transplant 22(9):2455–2457

    Article  PubMed  CAS  Google Scholar 

  22. Joseph F, Ahmad AM, Ul-Haq M, Durham BH, Whittingham P, Fraser WD, Vora JP (2008) Effects of growth hormone administration on bone mineral metabolism, PTH sensitivity and PTH secretory rhythm in postmenopausal women with established osteoporosis. J Bone Miner Res 23(5):721–729

    Article  PubMed  CAS  Google Scholar 

  23. Patel R, Blake GM, Rymer J, Fogelman I (2000) Long-term precision of DXA scanning assessed over seven years in forty postmenopausal women. Osteoporos Int 11(1):68–75

    Article  PubMed  CAS  Google Scholar 

  24. Manghat P, Souleimanova I, Cheung J, Wierzbicki AS, Harrington DJ, Shearer MJ, Chowienczyk P, Fogelman I, Goldsmith D, Hampson G (2011) Association of bone turnover markers and arterial stiffness in pre-dialysis chronic kidney disease (CKD). Bone 48(5):1127–1132

    Article  PubMed  CAS  Google Scholar 

  25. Millasseau SC, Kelly RP, Ritter JM, Chowienczyk PJ (2002) Determination of age-related increases in large artery stiffness by digital pulse contour analysis. Clin Sci (Lond) 103(4):371–377

    CAS  Google Scholar 

  26. Sollinger D, Mohaupt MG, Wilhelm A, Uehlinger D, Frey FJ, Eisenberger U (2006) Arterial stiffness assessed by digital volume pulse correlates with comorbidity in patients with ESRD. Am J Kidney Dis 48(3):456–463

    Article  PubMed  Google Scholar 

  27. Gunarathne A, Patel JV, Hughes EA, Lip GY (2008) Measurement of stiffness index by digital volume pulse analysis technique: clinical utility in cardiovascular disease risk stratification. Am J Hypertens 21(8):866–872

    Article  PubMed  Google Scholar 

  28. Cejka D, Jäger-Lansky A, Kieweg H, Weber M, Bieglmayer C, Haider DG, Diarra D, Patsch J, Kainberger F, Bohle B, Haas M (2012) Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol Dial Transplant 27(1):226–230

    Article  PubMed  CAS  Google Scholar 

  29. Kearns AE, Khosla S, Kosteniuk PJ (2008) Receptor activator of nuclear factor-κB ligand and osteoprotegerin regulation of bone remodelling in health and disease. Endocr Rev 29:155–192

    Article  PubMed  CAS  Google Scholar 

  30. Aguilera O, Peña C, García JM, Larriba MJ, Ordóñez-Morán P, Navarro D, Barbáchano A, López de Silanes I, Ballestar E, Fraga MF, Esteller M, Gamallo C, Bonilla F, González-Sancho JM, Muñoz A (2007) The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha,25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis 28(9):1877–1884

    Article  PubMed  CAS  Google Scholar 

  31. Cianferotti L, Demay MB (2007) VDR-mediated inhibition of DKK1 and SFRP2 suppresses adipogenic differentiation of murine bone marrow stromal cells. J Cell Biochem 101(1):80–88

    Article  PubMed  CAS  Google Scholar 

  32. Drake MT, Srinivasan B, Mödder UI, Peterson JM, McCready LK, Riggs BL, Dwyer D, Stolina M, Kostenuik P, Khosla S (2010) Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. J Clin Endocrinol Metab 95(11):5056–5062

    Article  PubMed  CAS  Google Scholar 

  33. van Lierop AH, Witteveen JE, Hamdy NA, Papapoulos SE (2010) Patients with primary hyperparathyroidism have lower circulating sclerostin levels than euparathyroid controls. Eur J Endocrinol 163(5):833–837

    Article  PubMed  Google Scholar 

  34. Ardawi MS, Al-Sibiany AM, Bakhsh TM, Rouzi AA, Qari MH (2011) Decreased serum sclerostin levels in patients with primary hyperparathyroidism: a cross-sectional and a longitudinal study. Osteoporos Int

Download references

Acknowledgments

This work was supported by a small grant from the Friends of Guy’s Hospital, London, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geeta Hampson.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thambiah, S., Roplekar, R., Manghat, P. et al. Circulating Sclerostin and Dickkopf-1 (DKK1) in Predialysis Chronic Kidney Disease (CKD): Relationship with Bone Density and Arterial Stiffness. Calcif Tissue Int 90, 473–480 (2012). https://doi.org/10.1007/s00223-012-9595-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-012-9595-4

Keywords

Navigation