Skip to main content

Advertisement

Log in

Time-resolved monitoring of heavy-metal intoxication in single hair by laser ablation ICP–DRCMS

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The potential of laser ablation inductively coupled plasma mass spectrometry for the time-resolved analysis of heavy-metal intoxication in human bodies by analysis of hair is demonstrated. As application, we analyzed forensic samples from one individual after Hg intake and from one treated with a Pt-containing cytostatic remedy. Single hairs were analyzed from the hair root to the tip by laser ablation ICP–MS with a spatial resolution of 20 μm (corresponding to approx. 2 h growth of the hair). Sulfur was used as internal standard and was analyzed by using oxygen as reaction gas in the dynamic reaction cell of the ICP–DRCMS. The detection limits for Hg and Pt were found to be 0.3 µg g–1 and 0.5 ng g−1, respectively. Standard uncertainties for the quantification results were 10% for Hg and approximately 15 % for Pt. The analyzed hair samples reflected the forensic evidence in both cases. A significant increase of Hg concentration, by a factor of 50, at the time of HgO administration could be shown, and variation of Pt in the hair strands could be used to monitor the time and relative amount of Pt intake by the patient. The investigations also revealed that the concentrations in the outer and the inner parts of the hair varied similarly with time, even though the concentration in the core of the hair is approximately 0.25 that at the surface for both Pt and Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Taylor A, Branch S, Halls D, Patriarca M, White M (2004) J Anal Atom Spectrom 19(4):505–556

    Article  CAS  Google Scholar 

  2. White CD (1993) J Archaeol Sci 20:657–666

    Article  Google Scholar 

  3. White LA (2001) Hair analysis panel discussion, http://www.atsdr.cdc.gov/HAC/hair_analysis/

  4. Casper J (1858) Praktisches handbuch der gerichtlichen medizin. A. Hirschwald, Berlin

    Google Scholar 

  5. (1912) Lancet 180/4660:1737

  6. Althausen TL, Gunther L (1929) J Am Med Assoc 29:2002–2006

    Google Scholar 

  7. Bass DA, Hickok D, Quig D, Urek K (2001) Alt Med Rev 6(5):472–481

    CAS  Google Scholar 

  8. Muramatsu Y, Parr RM (1988) Sci Tot Env 76(1):29–40

    Article  CAS  Google Scholar 

  9. Wilhelm M, Müller F, Idel H (1996) Toxicol Lett 88:221–226

    Article  PubMed  CAS  Google Scholar 

  10. Aharoni A, Tesler Y (1992) Am J Clin Nutr 55:104–107

    PubMed  CAS  Google Scholar 

  11. Steinmaus C, Nunez S, Smith AH (2000) Am J Epidemiol 151:693–702

    PubMed  CAS  Google Scholar 

  12. Hindmarsh JT (2002) Clin Biochem 35:1–11

    Article  PubMed  CAS  Google Scholar 

  13. Pereira R, Ribeiro R, Goncalves F (2004) Sci Tot Env 327(1–3):81–92

    Article  CAS  Google Scholar 

  14. Samanta G, Sharma R, Roychowdhury T, Chakraborti T (2004) Sci Tot Env 326:33–47

    Article  CAS  Google Scholar 

  15. Violante N, Senofonte O, Marsili G, Meli P, Soggiu ME, Caroli S (2000) Microchem J 67:397–405

    Article  CAS  Google Scholar 

  16. Mandal BK, Ogra Y, Suzuki KT (2003) Toxicol Appl Pharmacol 189:73–83

    Article  PubMed  CAS  Google Scholar 

  17. Pearson EF, Pounds CA (1971) J Forensic Sci Soc 11:229–234

    Article  PubMed  CAS  Google Scholar 

  18. Kempson IM, Skinner WM, Kerkbride PK, Nelson AJ, Martin RR (2003) Eur J Mass Spectrom 9:589–597

    Article  CAS  Google Scholar 

  19. Kempson IM, Skinner WM, Kirkbride PK (2003) Biochim Biophys Acta 1624(1–3):1–5

    PubMed  CAS  Google Scholar 

  20. Valkovich V, Miljanic D, Wheeler RM, Liebert RB, Zabel T, Philips GC (1973) Nature 111:251–252

    Google Scholar 

  21. Dombovari J, Papp L, Uzonyi I, Borbely-Kiss I, Elekes Z, Varga Z, Matyus J, Kakuk G (1999) J Anal Atom Spectrom 14:553–557

    Article  CAS  Google Scholar 

  22. Sera K, Fuutatsugawa S, Murao S (2002) Nucl Instr Methods in Phys Res B 189(1–4):174–179

    Article  CAS  Google Scholar 

  23. Corsi, Cristoforetti G, Hidalgo M, Legnaioli S, Palleschi V, Salvetti A, Tognoni E, Vallebona C (2003) Appl Optics 42(30):6133–6137

    Article  CAS  Google Scholar 

  24. Rodushkin I, Axelsson M (2003) Sci tot Env 305:23–39

    Article  CAS  Google Scholar 

  25. Rodushkin I, Axelsson MD (2000) Sci Tot Env 262:21–36

    Article  CAS  Google Scholar 

  26. Legrand M, Lam R, Jensen-Fontaine M, Salin MD, Man Chan H (2004) J Anal At Spectrom 19:1287–1288

    Article  CAS  Google Scholar 

  27. Stadlbauer C, Prohaska T, Reiter C, Stingeder G (2004) In: proceedings of the 7th International Conference on mercury as global pollutant in RMZ. Mater Geoenviron 51(1):529–532

    Google Scholar 

  28. Hann S, Latkoczy C, Bereuter T, Prohaska T, Stingeder G, Reiter C (2005) Int J Legal Med 119:35–39

    Article  PubMed  Google Scholar 

  29. Raith A, Godfrey J, Hutton RC (1996) Fresenius J Anal Chem 354:163–168

    Article  CAS  Google Scholar 

  30. Caroli S, Senofonte O, Violante N, Foranelli N, Powar A (1992) Microchem J 46:174–183

    Article  CAS  Google Scholar 

  31. Morton J, Carolan VA, Gardiner PHE (2002) Anal Chim Acta 455:23–34

    Article  CAS  Google Scholar 

  32. Coello WF, Khan MAQ (1998) Env Toxicol Risk Assess 7(1333):299–311

    Google Scholar 

  33. Skopp G, Pötsch L, Moeller MR (1997) Forensic Sci Int 84:43–52

    Article  PubMed  CAS  Google Scholar 

  34. Guillong M, Günther D (2002) J Anal At Spectrom 17:831–837

    Article  CAS  Google Scholar 

  35. Prohaska T, Latkoczy C, Schultheis G, Teschler-Nicola M, Stingeder G (2002) J Anal Atom Spectrom 17:887–891

    Article  CAS  Google Scholar 

  36. Pröfrock D, Leonhard P, Prange A (2003) Anal Bioanal Chem 377:132–139

    Article  PubMed  CAS  Google Scholar 

  37. Bandura DR, Baranov VI, Tanner SD (2002) Anal Chem 74(7):1497–1502

    Article  PubMed  CAS  Google Scholar 

  38. Munro DD (1966) Arch Dermatol 93:119–122

    Article  PubMed  CAS  Google Scholar 

  39. Myers RJ, Hammilton JB (1951) Ann NY Acad Sci 53:862–864

    Article  Google Scholar 

  40. Kempson IM Skinner WM (2004) Sci Tot Environ (in press, online version)

  41. Henderson GL (1993) Forensic Sci Int 63(1–3):19–29

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Alexander Urban for meticulous preparation of the cross-sections of the hair samples. We acknowledge financial support by the Ludwig Boltzmann Institute for Homoeopathy and by the Hochschuljubiläumsstiftung der Stadt Wien. We acknowledge the FWF Project P15430 for facilitating the laser ablation system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Prohaska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadlbauer, C., Prohaska, T., Reiter, C. et al. Time-resolved monitoring of heavy-metal intoxication in single hair by laser ablation ICP–DRCMS. Anal Bioanal Chem 383, 500–508 (2005). https://doi.org/10.1007/s00216-005-3283-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3283-4

Keywords

Navigation