Skip to main content

Advertisement

Log in

St. John's wort may relieve negative effects of stress on spatial working memory by changing synaptic plasticity

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Beneficial effects of St. John's wort (Hypericum perforatum) in the treatment of stress-evoked memory impairment were recently described. In this study, we tested a hypothesis that St. John's wort alleviates stress- and corticosterone-related memory impairments by restoring levels of synaptic plasticity proteins: neuromoduline (GAP-43) and synaptophysin (SYP) in hippocampus and prefrontal cortex. Stressed and corticosterone-treated rats displayed a decline in the acquisition of spatial working memory (p < 0.001) in the Barnes maze (BM). Chronic administration of H. perforatum (350 mg kg−1 for 21 days), potently and significantly improved processing of spatial information in the stressed and corticosterone-injected rats (p < 0.001). Also, St Johns' wort statistically significantly (p < 0.05) increased levels of GAP-43 and SYP, respectively in the hippocampi and prefrontal cortex as measured by western immunoblotting. We found that H. perforatum prevented the deleterious effects of both chronic restraint stress and prolonged corticosterone administration on working memory measured in the BM test. The herb significantly (p < 0.01) improved hippocampus-dependent spatial working memory in comparison with control and alleviated some other negative effects of stress on cognitive functions. These findings increase our understanding of the reaction of the hippocampus and prefrontal cortex to stressful assaults and provide new insight into the possible actions of H. perforatum in the treatment of patients with impaired adaptation to environmental stressors and simultaneously suffering from cognitive impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arnsten AF (2000) Stress impairs prefrontal cortical function in rats and monkeys: role of dopamine D1 and norepinephrine alpha-1 receptor mechanism. Prog Brain Res 126:183–192

    Article  PubMed  CAS  Google Scholar 

  • Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34:325–337

    Article  PubMed  CAS  Google Scholar 

  • Avital A, Richter-Levin G, Leschiner S, Spanier I, Veenman L, Weizman A, Gavish M (2001) Acute and repeated swim stress effects on peripheral benzodiazepine receptors in the rat hippocampus, adrenal, and kidney. Neuropsychopharmacology 25:669–678

    Article  PubMed  CAS  Google Scholar 

  • Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comparat Physiol Psychol 1:74–104

    Article  Google Scholar 

  • Belanoff JK, Gross K, Yager A, Schatzberg AF (2001) Corticosteroids and cognition. J Psychiatr Res 35:127–145

    Article  PubMed  CAS  Google Scholar 

  • Bennur S, Shankaranarayana Rao BS, Pawlak R, Strickland S, McEwen BS, Chattarji S (2007) Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience 144:8–16

    Article  PubMed  CAS  Google Scholar 

  • Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84–91

    Article  PubMed  CAS  Google Scholar 

  • Braszko JJ, Wiśniewski K, Kupryszewski G, Witczuk B (1987) Psychotropic affects of angiotensin II and III in rats: locomotor and exploratory vs cognitive behavior. Behav Brain Res 25:195–203

    Article  PubMed  CAS  Google Scholar 

  • Calhoun ME, Kurth D, Phinney AL, Long JM, Hengemihle J, Mouton PR, Ingram DK, Jucker M (1998) Hippocampal neuron and synaptophysin-positive bouton number in aging C57BL/6 mice. Neurobiol Aging 19:599–606

    Article  PubMed  CAS  Google Scholar 

  • Cerqueira JJ, Mailliet F, Almeida OF, Jay TM, Sousa N (2007) The prefrontal cortex as a key target of the maladaptive response to stress. J Neurosci 27(11):2781–2787

    Article  PubMed  CAS  Google Scholar 

  • Coleman P, Federoff H, Kurlan R (2004) A focus on the synapse for neuroprotection in Alzheimer disease and other dementias. Neurology 63:1155–1162

    PubMed  Google Scholar 

  • Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60:236–248

    Article  PubMed  Google Scholar 

  • Denny JB (2006) Molecular mechanisms, biological actions, and neuropharmacology of the growth-associated protein GAP-43. Curr Neuropharmacol 4(4):293–304

    Article  PubMed  CAS  Google Scholar 

  • Eastwood SL, Harrison PJ (2001) Synaptic pathology in the anterior cingulated cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull 55:569–578

    Article  PubMed  CAS  Google Scholar 

  • ESCOP Monographs: the scientific foundation for herbal medicinal products, Second Edition, Preface: F.H. Kemper, ESCOP (European Scientific Cooperative on Phytotherapy). Hyperici herba (St John's wort). Exeter and G. Thieme Verlag, Stuttgart and New York (2003) 257–281

  • Galea LA, McEwen BS, Tanapat P, Deak T, Spence RL, Dhabhar FS (1997) Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience 81:689–697

    Article  PubMed  CAS  Google Scholar 

  • Glowinski J, Iverson LL (1966) Regional studies of catecholamines in the rat brain. I. The disposition of [3H]norepinephrine, [3H]dopamine, and [3H]dopa in various regions of the brain. J Neurochem 13:655–669

    Article  PubMed  CAS  Google Scholar 

  • Goldwater DS, Pavlides C, Hunter RG, Bloss EB, Hof PR, McEwen BS, Morrison JH (2009) Structural and functional alterations to rat medial prefrontal cortex following chronic restraint stress and recovery. Neuroscience 164(2):798–808

    Article  PubMed  CAS  Google Scholar 

  • Kim JJ, Foy MR, Thompson RF (1996) Behavioral stress modifies hippocampal plasticity trough N-methyl-d-aspartate receptor activation. Proc Natl Acad Sci USA 93:4750–4753

    Article  PubMed  CAS  Google Scholar 

  • Magarinos AM, McEwen BS, Flugge G, Fuchs E (1996) Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 16:3534–3540

    PubMed  CAS  Google Scholar 

  • Masliah E, Honer WG, Mallory M, Voigt M, Kushner P, Hansen L, Terry R (1994) Topographical distribution of synaptic-associated proteins in the neuritic plaques of Alzheimer's disease hippocampus. Acta Neuropathol 87(2):135–142

    Article  PubMed  CAS  Google Scholar 

  • Mazer C, Muneyyirci J, Taheny K, Raio N, Borella A, Whitaker-Azmitia P (1997) Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: a possible model of neurodevelopmental disorders with cognitive deficits. Brain Res 760(1–2):68–73

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886:172–189

    Article  PubMed  CAS  Google Scholar 

  • Morales-Medina JC, Sanchez F, Flores G, Dumont Y, Quirion R (2009) Morphological reorganization after repeated corticosterone administration in the hippocampus, nucleus accumbens and amygdala in the rat. J Chem Neuroanat 38(4):266–272

    Article  PubMed  CAS  Google Scholar 

  • Mullany P, Lynch MA (1997) Changes in protein synthesis and synthesis of the synaptic vesicle protein, synaptophysin, in entorhinal cortex following induction of long-term potentiation in dentate gyrus: an age-related study in the rat. Neuropharmacology 36(7):973–980

    Article  PubMed  CAS  Google Scholar 

  • Nishi M, Whitaker-Azmitia PM, Azmitia EC (1996) Enhanced synaptophysin immunoreactivity in rat hippocampal culture by 5-HT 1A agonist, S100b, and corticosteroid receptor agonists. Synapse 23(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher AB, De Graan PN, Gispen WH, Verhaagen J, Schrama LH (1997) B-50, the growth associated protein-43: modulation of cell morphology and communication in the nervous system. Prog Neurobiol 53:627–686

    Article  PubMed  CAS  Google Scholar 

  • Pascale A, Gusev PA, Amadio M, Dottorini T, Govoni S, Alkon DL, Quattrone A (2004) Increase of the RNA-binding protein HuD and posttranscriptional up-regulation of the GAP-43 gene during spatial memory. Proc Natl Acad Sci USA 101:1217–1222

    Article  PubMed  CAS  Google Scholar 

  • Perrone-Bizzozero NI, Sower AC, Bird ED, Benowitz LI, Ivins KJ, Neve RL (1996) Levels of the growth-associated protein GAP-43 are selectively increased in association cortices in schizophrenia. Proc Natl Acad Sci USA 93:14182–14187

    Article  PubMed  CAS  Google Scholar 

  • Radley JJ, Sisti HM, Rocher AB, Hao J, McCall T, Hof PR, McEwen BS, Morrison JH (2004) Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125:1–6

    Article  PubMed  CAS  Google Scholar 

  • Ramakers GJ, Oestreicher AB, Wolters PS, van Leeuwen FW, De Graan PN, Gispen WH (1991) Developmental changes in B-50 (GAP-43) in primary cultures of cerebral cortex: B-50 immunolocalization, axonal elongation rate and growth cone morphology. Int J Dev Neurosci 9:215–230

    Article  PubMed  CAS  Google Scholar 

  • Rapp S, Baader M, Hu M, Jennen-Steinmetz C, Henn FA, Thome J (2004) Differential regulation of synaptic vesicle proteins by antidepressant drugs. Pharmacogenomics J 4(2):110–113

    Article  PubMed  CAS  Google Scholar 

  • Rehm H, Wiedenmann B, Betz H (1986) Molecular characterization of synaptophysin, a major calcium-binding protein of the synaptic vesicle membrane. EMBO J 5(3):535–541

    PubMed  CAS  Google Scholar 

  • Routtenberg A, Cantallops I, Zaffuto S, Serrano P, Namgung U (2000) Enhanced learning after genetic overexpression of a brain growth protein. Proc Natl Acad Sci USA 97:7657–7662

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatr 57(10):925–935

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Mani S, Meiri KF (2004) Failure to express GAP-43 leads to disruption of a multipotent precursor and inhibits astrocyte differentiation. Mol Cell Neurosci 26:390–405

    Article  PubMed  CAS  Google Scholar 

  • Silva AJ (2003) Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J Neurobiol 54:224–237

    Article  PubMed  CAS  Google Scholar 

  • Sousa N, Lukoyanov NV, Madeira MD, Almeida OF, Paula-Barbosa MM (2000) Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience 97:253–266

    Article  PubMed  CAS  Google Scholar 

  • Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ (1997) Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 56:933–944

    Article  PubMed  CAS  Google Scholar 

  • Thome J, Pesold B, Baader M, Hu M, Gewirtz JC, Duman RS, Henn FA (2001) Stress differentially regulates synaptophysin and synaptotagmin expression in hippocampus. Biol Psychiatr 50:809–812

    Article  CAS  Google Scholar 

  • Trofimiuk E, Braszko JJ (2008) Alleviation by Hypericum perforatum of the stress-induced impairment of spatial working memory in rats. Naunyn Schmiedebergs Arch Pharmacol 376(6):463–471

    Article  PubMed  CAS  Google Scholar 

  • Trofimiuk E, Holownia A, Braszko JJ (2010) Activation of CREB by St. John's wort may diminish deletorious effects of aging on spatial memory. Arch Pharm Res 33(3):469–477

    Article  PubMed  CAS  Google Scholar 

  • Van Lookeren CM, Dotti CG, Jap Tjoen San ER, Verkleij AJ, Gispen WH, Oestreicher AB (1992) B-50/GAP43 localization in polarized hippocampal neurons in vitro: an ultrastructural quantitative study. Neuroscience 50:35–52

    Article  Google Scholar 

  • Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38, 000 characteristic of presynaptic vesicles. Cell 41:1017–1028

    Article  PubMed  CAS  Google Scholar 

  • Xu H, He J, Richardson JS, Li XM (2004) The response of synaptophysin and microtubule-associated protein 1 to restraint stress in rat hippocampus and its modulation by venlafaxine. J Neurochem 91(6):1380–1388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Medical University of Bialystok (3-66873L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Trofimiuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trofimiuk, E., Holownia, A. & Braszko, J.J. St. John's wort may relieve negative effects of stress on spatial working memory by changing synaptic plasticity. Naunyn-Schmied Arch Pharmacol 383, 415–422 (2011). https://doi.org/10.1007/s00210-011-0604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0604-3

Keywords

Navigation