Skip to main content

Advertisement

Log in

Hyperforin is a modulator of inducible nitric oxide synthase and phagocytosis in microglia and macrophages

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Upon activation, microglia, the immunocompetent cells in the brain, get highly phagocytic and release pro-inflammatory mediators like nitric oxide (NO). Excessive NO production is pivotal in neurodegenerative disorders, and there is evidence that abnormalities in NO production and inflammatory responses may at least support a range of neuropsychiatric disorders, including depression. Although extracts of St. John’s wort (Hypericum perforatum L.) have been used for centuries in traditional medicine, notably for the treatment of depression, there is still considerable lack in scientific knowledge about the impact on microglia. We used N11 and BV2 mouse microglia, as well as RAW 264.7 macrophages to investigate the effects of St. John’s wort extract and constituents thereof on NO production Moreover, flow cytometry and fluorescence microscopy were employed to analyze the influence on phagocytosis, transcription factor activation states, and cell motility. We found that extracts of St. John’s wort efficiently suppress lipopolysaccharide-induced NO release and identified hyperforin as the responsible compound, being effective at concentrations between 0.25 and 0.75 µM. The reduced NO production was mediated by diminished inducible nitric oxide synthase expression on the mRNA and protein level. In addition, at similar concentrations, hyperforin reduced zymosan phygocytosis to 20–40% and putatively acted by downregulating the CD206 macrophage mannose receptor and modulation of cell motility. We found that the observed effects correlate with a suppression of the activated state of Nf-kappaB and phospho-CREB, while c-JUN, STAT1, and HIF-1alpha activity and cyclooxygenase-2 expression remained unaffected by hyperforin. These results reveal that hyperforin influences pro-inflammatory and immunological responses of microglia that are involved in the progression of neuropathologic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • abd-el-Basset E, Fedoroff S (1995) Effect of bacterial wall lipopolysaccharide (LPS) on morphology, motility, and cytoskeletal organization of microglia in cultures. J Neurosci Res 41:222–237

    Article  CAS  PubMed  Google Scholar 

  • Albert D, Zundorf I, Dingermann T, Muller WE, Steinhilber D, Werz O (2002) Hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase. Biochem Pharmacol 64:1767–1775

    Article  CAS  PubMed  Google Scholar 

  • Astarie-Dequeker C, N’Diaye EN, Le Cabec V, Rittig MG, Prandi J, Maridonneau-Parini I (1999) The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect Immun 67:469–477

    CAS  PubMed  Google Scholar 

  • Barnes J, Anderson LA, Phillipson JD (2001) St John’s wort (Hypericum perforatum L.): a review of its chemistry, pharmacology and clinical properties. J Pharm Pharmacol 53:583–600

    Article  CAS  PubMed  Google Scholar 

  • Beerhues L (2006) Hyperforin. Phytochemistry 67:2201–2207

    Article  CAS  PubMed  Google Scholar 

  • Blasi E, Mazzolla R, Barluzzi R, Mosci P, Bartoli A, Bistoni F (1991) Intracerebral transfer of an in vitro established microglial cell line: local induction of a protective state against lethal challenge with Candida albicans. J Neuroimmunol 32:249–257

    Article  CAS  PubMed  Google Scholar 

  • Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  • Brown EJ (1995) Phagocytosis. Bioessays 17:109–117

    Article  CAS  PubMed  Google Scholar 

  • Butterweck V (2003) Mechanism of action of St John’s wort in depression: what is known? CNS Drugs 17:539–562

    Article  CAS  PubMed  Google Scholar 

  • Butterweck V, Schmidt M (2007) St. John’s wort: role of active compounds for its mechanism of action and efficacy. Wien Med Wochenschr 157:356–361

    Article  PubMed  Google Scholar 

  • Butterweck V, Petereit F, Winterhoff H, Nahrstedt A (1998) Solubilized hypericin and pseudohypericin from Hypericum perforatum exert antidepressant activity in the forced swimming test. Planta Med 64:291–294

    Article  CAS  PubMed  Google Scholar 

  • Butterweck V, Jurgenliemk G, Nahrstedt A, Winterhoff H (2000) Flavonoids from Hypericum perforatum show antidepressant activity in the forced swimming test. Planta Med 66:3–6

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Stanek EJ 3rd, Nascarella MA, Hoffmann GR (2008) Hormesis predicts low-dose–responses better than threshold models. Int J Toxicol 27:369–378

    Article  CAS  PubMed  Google Scholar 

  • Dell’Aica I, Niero R, Piazza F, Cabrelle A, Sartor L, Colalto C, Brunetta E, Lorusso G, Benelli R, Albini A et al (2007) Hyperforin blocks neutrophil activation of matrix metalloproteinase-9, motility and recruitment, and restrains inflammation-triggered angiogenesis and lung fibrosis. J Pharmacol Exp Ther 321:492–500

    Article  PubMed  CAS  Google Scholar 

  • Dheen ST, Kaur C, Ling EA (2007) Microglial activation and its implications in the brain diseases. Curr Med Chem 14:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Eckert GP, Keller JH, Jourdan C, Karas M, Volmer DA, Schubert-Zsilavecz M, Muller WE (2004) Hyperforin modifies neuronal membrane properties in vivo. Neurosci Lett 367:139–143

    Article  CAS  PubMed  Google Scholar 

  • Garden GA, Moller T (2006) Microglia biology in health and disease. J Neuroimmune Pharmacol 1:127–137

    Article  PubMed  Google Scholar 

  • Gartner M, Muller T, Simon JC, Giannis A, Sleeman JP (2005) Aristoforin, a novel stable derivative of hyperforin, is a potent anticancer agent. Chembiochem 6:171–177

    Article  CAS  PubMed  Google Scholar 

  • Gassmann M, Grenacher B, Rohde B, Vogel J (2009) Quantifying Western blots: pitfalls of densitometry. Electrophoresis 30:1845–1855

    Article  CAS  PubMed  Google Scholar 

  • Hammer KD, Hillwig ML, Solco AK, Dixon PM, Delate K, Murphy PA, Wurtele ES, Birt DF (2007) Inhibition of prostaglandin E(2) production by anti-inflammatory Hypericum perforatum extracts and constituents in RAW264.7 Mouse Macrophage Cells. J Agric Food Chem 55:7323–7331

    Article  CAS  PubMed  Google Scholar 

  • Hostanska K, Reichling J, Bommer S, Weber M, Saller R (2003) Hyperforin a constituent of St John’s wort (Hypericum perforatum L.) extract induces apoptosis by triggering activation of caspases and with hypericin synergistically exerts cytotoxicity towards human malignant cell lines. Eur J Pharm Biopharm 56:121–132

    Article  CAS  PubMed  Google Scholar 

  • Kao TK, Ou YC, Raung SL, Lai CY, Liao SL, Chen CJ (2010) Inhibition of nitric oxide production by quercetin in endotoxin/cytokine-stimulated microglia. Life Sci 86:315–321

    Article  CAS  PubMed  Google Scholar 

  • Kim WK, Jang PG, Woo MS, Han IO, Piao HZ, Lee K, Lee H, Joh TH, Kim HS (2004) A new anti-inflammatory agent KL-1037 represses pro-inflammatory cytokine and inducible nitric oxide synthase (iNOS) gene expression in activated microglia. Neuropharmacology 47:243–252

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Yang JS, Woo SS, Kim SK, Yun CH, Kim KK, Han SH (2007) Lipoteichoic acid and muramyl dipeptide synergistically induce maturation of human dendritic cells and concurrent expression of pro-inflammatory cytokines. J Leukoc Biol 81:983–989

    Article  CAS  PubMed  Google Scholar 

  • Leonard BE (2007) Inflammation, depression and dementia: are they connected? Neurochem Res 32:1749–1756

    Article  CAS  PubMed  Google Scholar 

  • Leonard BE, Myint A (2006) Inflammation and depression: is there a causal connection with dementia? Neurotox Res 10:149–160

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu L, Barger SW, Mrak RE, Griffin WS (2001) Vitamin E suppression of microglial activation is neuroprotective. J Neurosci Res 66:163–170

    Article  CAS  PubMed  Google Scholar 

  • Lorusso G, Vannini N, Sogno I, Generoso L, Garbisa S, Noonan DM, Albini A (2009) Mechanisms of Hyperforin as an anti-angiogenic angioprevention agent. Eur J Cancer 45(8):1474–1484

    Article  CAS  PubMed  Google Scholar 

  • Luckey TD (2008) Atomic bomb health benefits. Dose–response 6:369–382

    CAS  PubMed  Google Scholar 

  • Marzolo MP, von Bernhardi R, Inestrosa NC (1999) Mannose receptor is present in a functional state in rat microglial cells. J Neurosci Res 58:387–395

    Article  CAS  PubMed  Google Scholar 

  • McCue PP, Phang JM (2008) Identification of human intracellular targets of the Medicinal Herb St. John’s Wort by chemical-genetic profiling in yeast. J Agric Food Chem 56:11011–11017

    Article  CAS  PubMed  Google Scholar 

  • Medina MA, Martinez-Poveda B, Amores-Sanchez MI, Quesada AR (2006) Hyperforin: more than an antidepressant bioactive compound? Life Sci 79:105–111

    Article  CAS  PubMed  Google Scholar 

  • Menegazzi M, Novelli M, Beffy P, D’Aleo V, Tedeschi E, Lupi R, Zoratti E, Marchetti P, Suzuki H, Masiello P (2008) Protective effects of St. John’s wort extract and its component hyperforin against cytokine-induced cytotoxicity in a pancreatic beta-cell line. Int J Biochem Cell Biol 40:1509–1521

    Article  CAS  PubMed  Google Scholar 

  • Moon DO, Choi YH, Kim ND, Park YM, Kim GY (2007a) Anti-inflammatory effects of beta-lapachone in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol 7:506–514

    Article  CAS  PubMed  Google Scholar 

  • Moon DO, Park SY, Lee KJ, Heo MS, Kim KC, Kim MO, Lee JD, Choi YH, Kim GY (2007b) Bee venom and melittin reduce pro-inflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int Immunopharmacol 7:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Mrak RE, Griffin WS (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354

    Article  CAS  PubMed  Google Scholar 

  • Napoli I, Neumann H (2009) Microglial clearance function in health and disease. Neuroscience 158:1030–1038

    Article  CAS  PubMed  Google Scholar 

  • O’Dea E, Hoffmann A (2009) NF-kappaB signaling. Wiley Interdiscip Rev Syst Biol Med 1:107

    Article  PubMed  Google Scholar 

  • Orth HC, Rentel C, Schmidt PC (1999) Isolation, purity analysis and stability of hyperforin as a standard material from Hypericum perforatum L. J Pharm Pharmacol 51:193–200

    Article  CAS  PubMed  Google Scholar 

  • Overbergh L, Valckx D, Waer M, Mathieu C (1999) Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PCR. Cytokine 11:305–312

    Article  CAS  PubMed  Google Scholar 

  • Park E, Quinn MR, Wright CE, Schuller-Levis G (1993) Taurine chloramine inhibits the synthesis of nitric oxide and the release of tumor necrosis factor in activated RAW 264.7 cells. J Leukoc Biol 54:119–124

    CAS  PubMed  Google Scholar 

  • Quiney C, Billard C, Salanoubat C, Fourneron JD, Kolb JP (2006) Hyperforin, a new lead compound against the progression of cancer and leukemia? Leukemia 20:1519–1525

    Article  CAS  PubMed  Google Scholar 

  • Quiney C, Billard C, Faussat AM, Salanoubat C, Kolb JP (2007) Hyperforin inhibits P-gp and BCRP activities in chronic lymphocytic leukaemia cells and myeloid cells. Leuk Lymphoma 48:1587–1599

    Article  CAS  PubMed  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6:219–233

    Article  CAS  PubMed  Google Scholar 

  • Raschke WC, Baird S, Ralph P, Nakoinz I (1978) Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 15:261–267

    Article  CAS  PubMed  Google Scholar 

  • Regnier-Vigouroux A (2003) The mannose receptor in the brain. Int Rev Cytol 226:321–342

    Article  CAS  PubMed  Google Scholar 

  • Righi M, Letari O, Sacerdote P, Marangoni F, Miozzo A, Nicosia S (1995) myc-immortalized microglial cells express a functional platelet-activating factor receptor. J Neurochem 64:121–129

    CAS  PubMed  Google Scholar 

  • Saraf MK, Prabhakar S, Pandhi P, Anand A (2008) Bacopa monniera ameliorates amnesic effects of diazepam qualifying behavioral-molecular partitioning. Neuroscience 155:476–484

    Article  CAS  PubMed  Google Scholar 

  • Schempp CM, Kirkin V, Simon-Haarhaus B, Kersten A, Kiss J, Termeer CC, Gilb B, Kaufmann T, Borner C, Sleeman JP et al (2002) Inhibition of tumour cell growth by hyperforin, a novel anticancer drug from St. John’s wort that acts by induction of apoptosis. Oncogene 21:1242–1250

    Article  CAS  PubMed  Google Scholar 

  • Schiff PB, Horwitz SB (1980) Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A 77:1561–1565

    Article  CAS  PubMed  Google Scholar 

  • Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293

    Article  CAS  PubMed  Google Scholar 

  • Smith ME (2001) Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis and EAE. Microsc Res Tech 54:81–94

    Article  CAS  PubMed  Google Scholar 

  • Suh HW, Choi SS, Lee JK, Lee HK, Han EJ, Lee J (2004) Regulation of c-fos and c-jun gene expression by lipopolysaccharide and cytokines in primary cultured astrocytes: effect of PKA and PKC pathways. Arch Pharm Res 27:396–401

    Article  CAS  PubMed  Google Scholar 

  • Sulser F (2002) The role of CREB and other transcription factors in the pharmacotherapy and etiology of depression. Ann Med 34:348–356

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi E, Menegazzi M, Margotto D, Suzuki H, Forstermann U, Kleinert H (2003) Anti-inflammatory actions of St. John’s wort: inhibition of human inducible nitric-oxide synthase expression by down-regulating signal transducer and activator of transcription-1alpha (STAT-1alpha) activation. J Pharmacol Exp Ther 307:254–261

    Article  CAS  PubMed  Google Scholar 

  • Tedeschi E, Menegazzi M, Yao Y, Suzuki H, Forstermann U, Kleinert H (2004) Green tea inhibits human inducible nitric-oxide synthase expression by down-regulating signal transducer and activator of transcription-1alpha activation. Mol Pharmacol 65:111–120

    Article  CAS  PubMed  Google Scholar 

  • Verotta L (2003) Hypericum perforatum, a source of neuroactive lead structures. Current Topics in Medicinal Chemistry 3:187–201

    Article  CAS  PubMed  Google Scholar 

  • Vilhardt F (2005) Microglia: phagocyte and glia cell. Int J Biochem Cell Biol 37:17–21

    Article  CAS  PubMed  Google Scholar 

  • Wegener E, Krappmann D (2008) Dynamic protein complexes regulate NF-kappaB signaling. Handb Exp Pharmacol 186:237–259

    Article  CAS  PubMed  Google Scholar 

  • Zanoli P (2004) Role of hyperforin in the pharmacological activities of St. John’s Wort. CNS Drug Rev 10:203–218

    Article  CAS  PubMed  Google Scholar 

  • Zielasek J, Hartung HP (1996) Molecular mechanisms of microglial activation. Adv Neuroimmunol 6:191–22

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. S. Kern (Chair of Phytopathology, Technical University Munich) for help with HPLC measurements, Dr. E. Mann (Chair of Phytopathology, Technical University Munich) for providing the H. perforatum extracts and Magdalena Motyl (Pharmaceutical Biology, University of Regensburg) for performing experiments on hyperforin recovery in cultured cells. We are especially grateful to Dr. D. Weiser (Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany) for granted support. B. Kraus was funded by Steigerwald Arzneimittel GmbH (Darmstadt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Kraus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Inhibition of NO production by HPE but not by single major constituents of HPE. A N11 and B RAW 264.7 cells were exposed for 24 h to HPE and concentrations of hypericin (Hc), pseudohypericin (Ps), rutin (Ru), hyperoside (Hd), quercitrin (Qui), quercetin (Que) corresponding to amounts present in HPE. Subsequently, a 24-h LPS treatment followed. In both cell lines, a decrease of nitrite in the culture medium was observed for HPE but not for the individual compounds. Bars show means and standard deviations. Experiments were carried out with eight parallels and repeated independently three times. Asterisks indicate significance for HPE relative to the LPS-only control. (GIF 71 kb)

High resolution image (TIFF 209 kb)

Supplementary Figure 2

Influence of Hf on cell viability as determined by MTT assay. A BV2, B N11, and C RAW 264.7 cells were treated for 24 h with solvent control or increasing concentrations of Hf. Data were normalized to the solvent control (100%). Bars show means and standard deviations. Experiments were carried out with eight parallels and repeated independently three times. Asterisks indicate significance relative to the control. (GIF 102 kb)

High resolution image (TIFF 404 kb)

Supplementary Figure 3

Stainings of cellular factors. The panels depict small regions of interest taken from representative images of transcription factor stainings used to determine activation state or expression levels in Fig. 3. Left image: unstimulated cells. Center image: cells stimulated with LPS and IFN-γ. Right image: stimulated cells pre-treated with Hf. Exemplary images from BV2 and N11 cells are shown. Merge images display the cellular factors pseudo-colored in green and nuclei in blue. Scale bar: 20 μm. (GIF 290 kb)

High resolution image (TIFF 13341 kb)

Supplementary Figure 4

Influence of Hf on phagocytosis (FACS histograms). FACS histograms of BV2 phagocytosis of fluorescently labeled zymosan. Cells were either pretreated with EtOH only (control, A) or with increasing concentrations of Hf B 0.25 μM, C 0.5 μM, D 0.625 μM, and E 0.75 μM. In histograms, green fluorescence (FL-1) is shown on a log scale and the percentage of cells that are green positive is indicated. (GIF 48 kb)

High resolution image (TIFF 166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraus, B., Wolff, H., Elstner, E.F. et al. Hyperforin is a modulator of inducible nitric oxide synthase and phagocytosis in microglia and macrophages. Naunyn-Schmied Arch Pharmacol 381, 541–553 (2010). https://doi.org/10.1007/s00210-010-0512-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-010-0512-y

Keywords

Navigation