Skip to main content

Advertisement

Log in

Genetic variants in urinary bladder cancer: collective power of the “wimp SNPs”

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

In recent years, genome-wide association studies (GWAS) have identified more than 300 validated associations between genetic variants and risk of approximately 70 common diseases. A small number of rare variants with a frequency of usually less than 1% are associated with a strongly enhanced risk, such as genetic variants of TP53, RB1, BRCA1, and BRCA2. Only a very small number of SNPs (with a frequency of more that 1% of the rare allele) have effects of a factor of two or higher. Examples include APOE4 in Alzheimer’s disease, LOXL1 in exfoliative glaucoma, and CFH in age-related macular degeneration. However, the majority of all identified SNPs have odds ratios between 1.1 and 1.5. In the case of urinary bladder cancer, all known SNPs that have been validated in sufficiently large populations are associated with odds ratios smaller than 1.5. These SNPs are located next to the following genes: MYC, TP63, PSCA, the TERT-CLPTM1L locus, FGFR3, TACC3, NAT2, CBX6, APOBEC3A, CCNE1, and UGT1A. It is likely that these moderate risk or “wimp SNPs” interact, and because of their high number, collectively have a strong influence on whether an individual will develop cancer or not. It should be considered that variants identified so far explain only approximately 5–10% of the overall inherited risk. Possibly, the remaining variance is due to an even higher number of SNPs with odds ratios smaller than 1.1. Recent studies have provided the following information: (1) The functions of genes identified as relevant for bladder cancer focus on detoxification of carcinogens, control of the cell cycle and apoptosis, as well as maintenance of DNA integrity. (2) Many novel SNPs are far away from the protein coding regions, suggesting that these SNPs are located on distant-acting transcriptional enhancers. (3) The low odds ratio of each individual bladder cancer-associated SNP is too low to justify reasonable preventive measures. However, if the recently identified SNPs interact, they may collectively result in a substantial risk that is of preventive relevance. In addition to the “novel SNPs” identified by the recent GWAS, at least 163 further variants have been reported in relation to bladder cancer, although they have not been consistently validated in independent case–control series. Moreover, given that only 60 of these 163 “old SNPs” are covered by the SNP chips used in the recent GWAS, there are in principle 103 published variants still awaiting validation or disproval. In future, besides identifying novel disease-associated rare variants by deep sequencing, it will also be important to understand how the already identified variants interact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbasi R, Ramroth H, Becher H et al (2009) Laryngeal cancer risk associated with smoking and alcohol consumption is modified by genetic polymorphisms in ERCC5, ERCC6 and RAD23B but not by polymorphisms in five other nucleotide excision repair genes. Int J Cancer 125:1431–1439

    PubMed  CAS  Google Scholar 

  • Abe H, Ochi H, Maekawa T et al (2009) Effects of structural variations of APOBEC3A and APOBEC3B genes in chronic hepatitis B virus infection. Hepatol Res 39:1159–1168

    PubMed  CAS  Google Scholar 

  • Ahirwar DK, Mandhani A, Dharaskar A, Kesarwani P, Mittal RD (2009) Association of tumour necrosis factor-alpha gene (T-1031C, C-863A, and C-857T) polymorphisms with bladder cancer susceptibility and outcome after bacille Calmette-Guérin immunotherapy. BJU Int 104:867–873

    PubMed  CAS  Google Scholar 

  • Ahirwar DK, Mandhani A, Mittal RD (2010) IL-8-251 T> A polymorphism is associated with bladder cancer susceptibility and outcome after BCG immunotherapy in a northern Indian cohort. Arch Med Res 41:97–103

    PubMed  CAS  Google Scholar 

  • Alakus H, Afriani N, Warnecke-Eberz U et al (2010) Clinical impact of MMP and TIMP gene polymorphisms in gastric cancer. World J Surg 34:2853–2859

    PubMed  Google Scholar 

  • Altshuler D, Daly MJ, Lander ES (2008) Genetic mapping in human disease. Science 322(5903):881–888

    PubMed  CAS  Google Scholar 

  • Andrew AS, Gui J, Sanderson AC et al (2009) Bladder cancer SNP panel predicts susceptibility and survival. Hum Genet 125:527–539

    PubMed  Google Scholar 

  • Arand M, Mühlbauer R, Hengstler J et al (1996) A multiplex polymerase chain reaction protocol for the simultaneous analysis of the glutathione S-transferase GSTM1 and GSTT1 polymorphisms. Anal Biochem 236:184–186

    PubMed  CAS  Google Scholar 

  • Arizono K, Osada Y, Kuroda Y (2008) DNA repair gene hOGG1 codon 326 and XRCC1 codon 399 polymorphisms and bladder cancer risk in a Japanese population. Jpn J Clin Oncol 38:186–191

    PubMed  Google Scholar 

  • Aulchenko YS, Ripke S, Isaacs A, van Duijn CM (2007) GenABEL: an R library for genome-wide association analysis. Bioinformatics 23:1294–1296

    PubMed  CAS  Google Scholar 

  • Bégin P, Tremblay K, Daley D et al (2007) Association of urokinase-type plasminogen activator with asthma and atopy. Am J Respir Crit Care Med 175:1109–1116

    PubMed  Google Scholar 

  • Berman DM, Wang Y, Liu Z et al (2004) A functional polymorphism in RGS6 modulates the risk of bladder cancer. Cancer Res 64:6820–6826

    PubMed  CAS  Google Scholar 

  • Bezemer ID, Doggen CJ, Vos HL, Rosendaal FR (2007) No association between the common MTHFR 677C->T polymorphism and venous thrombosis: results from the MEGA study. Arch Intern Med 167:497–501 (also included in cumulative thesis: Bezemer ID (2009) Genetic variation and susceptibility to venous thrombosis, Leiden University)

    Google Scholar 

  • Bolt HM, Golka K (2007) The debate on carcinogenicity of permanent hair dyes: new insights. Crit Rev Toxicol 37:521–536

    PubMed  CAS  Google Scholar 

  • Bolt HM, Thier R (2006) Relevance of the deletion polymorphisms of the glutathione S-transferases GSTT1 and GSTM1 in pharmacology and toxicology. Curr Drug Metab 7:613–628

    PubMed  CAS  Google Scholar 

  • Brockmöller J, Cascorbi I, Kerb R, Roots I (1996) Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res 56:3915–3925

    PubMed  Google Scholar 

  • Browning SR (2008) Missing data imputation and haplotype phase inference for genome-wide association studies. Hum Genet 124:439–450

    PubMed  CAS  Google Scholar 

  • Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097

    PubMed  CAS  Google Scholar 

  • Browning BL, Browning SR (2009) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223

    PubMed  CAS  Google Scholar 

  • Cadenas C, Franckenstein D, Schmidt M et al (2010) Role of thioredoxin reductase 1 and thioredoxin interacting protein in prognosis of breast cancer. Breast Cancer Res 12:R44

    Google Scholar 

  • Cai DW, Liu XF, Bu RG et al (2009) Genetic polymorphisms of MTHFR and aberrant promoter hypermethylation of the RASSF1A gene in bladder cancer risk in a Chinese population. J Int Med Res 37:1882–1889

    PubMed  CAS  Google Scholar 

  • Carmo H, Brulport M, Hermes M et al (2006) Influence of CYP2D6 polymorphism on 3,4-methylenedioxymethamphetamine (‘Ecstasy’) cytotoxicity. Pharmacogenet Genomics 16:789–799

    PubMed  CAS  Google Scholar 

  • Carr SM, Marshall HD, Duggan AT et al (2008) Phylogeographic genomics of mitochondrial DNA: highly-resolved patterns of intraspecific evolution and a multi-species, microarray-based DNA sequencing strategy for biodiversity studies. Comp Biochem Physiol Part D Genomics Proteomics 3:1–11

    PubMed  Google Scholar 

  • Cascorbi I, Roots I, Brockmöller J (2001) Association of NAT1 and NAT2 polymorphisms to urinary bladder cancer: significantly reduced risk in subjects with NAT1*10. Cancer Res 61:5051–5056

    PubMed  CAS  Google Scholar 

  • Castillejo A, Mata-Balaguer T, Guarinos C et al (2009) The Int7G24A variant of transforming growth factor-beta receptor type I is a risk factor for colorectal cancer in the male Spanish population: a case–control study. BMC Cancer 9:406

    PubMed  Google Scholar 

  • Chang CH, Chiu CF, Wang HC et al (2009a) Significant association of ERCC6 single nucleotide polymorphisms with bladder cancer susceptibility in Taiwan. Anticancer Res 29:5121–5124

    PubMed  CAS  Google Scholar 

  • Chang CH, Chiu CF, Liang SY et al (2009b) Significant association of Ku80 single nucleotide polymorphisms with bladder cancer susceptibility in Taiwan. Anticancer Res 29:1275–1279

    PubMed  CAS  Google Scholar 

  • Chang CH, Wang RF, Tsai RY et al (2009c) Significant association of XPD codon 312 single nucleotide polymorphism with bladder cancer susceptibility in Taiwan. Anticancer Res 29:3903–3907

    PubMed  CAS  Google Scholar 

  • Chang CH, Chang CL, Tsai CW et al (2009d) Significant association of an XRCC4 single nucleotide polymorphism with bladder cancer susceptibility in Taiwan. Anticancer Res 29:1777–1782

    PubMed  CAS  Google Scholar 

  • Chao C, Zhang ZF, Berthiller J, Boffetta P, Hashibe M (2006) NAD(P)H: quinone oxidoreductase 1 (NQO1) Pro187Ser polymorphism and the risk of lung, bladder, and colorectal cancers: a meta-analysis. Cancer Epidemiol Biomarkers Prev 5:979–987

    Google Scholar 

  • Chen WC, Wu HC, Hsu CD, Chen HY, Tsai FJ (2002) p21 gene codon 31 polymorphism is associated with bladder cancer. Urol Oncol 7:63–66

    PubMed  CAS  Google Scholar 

  • Chen T, Jackson C, Costello B et al (2004) An intronic variant of the TGFBR1 gene is associated with carcinomas of the kidney and bladder. Int J Cancer 112:420–425

    PubMed  CAS  Google Scholar 

  • Chen M, Cassidy A, Gu J et al (2009) Genetic variations in PI3K-AKT-mTOR pathway and bladder cancer risk. Carcinogenesis 12:2047–2052

    Google Scholar 

  • Cheung AL, Deng W (2008) Telomere dysfunction, genome instability and cancer. Front Biosci 13:2075–2090

    PubMed  CAS  Google Scholar 

  • Chiu CF, Tsai MH, Tseng HC et al (2008) A novel single nucleotide polymorphism in XRCC4 gene is associated with oral cancer susceptibility in Taiwanese patients. Oral Oncol 44:898–902

    PubMed  CAS  Google Scholar 

  • Choi JY, Lee KM, Cho SH et al (2003) CYP2E1 and NQO1 genotypes, smoking and bladder cancer. Pharmacogenetics 13:349–355

    PubMed  CAS  Google Scholar 

  • Choudhury A, Elliott F, Iles MM et al (2008) Analysis of variants in DNA damage signalling genes in bladder cancer. BMC Med Genet 9:69

    PubMed  Google Scholar 

  • Cox DG, Hankinson SE, Kraft P, Hunter DJ (2004) No association between GPX1 Pro198Leu and breast cancer risk. Cancer Epidemiol Biomarkers Prev 1821–1822

  • de Verdier PJ, Sanyal S, Bermejo JL, Steineck G, Hemminki K, Kumar R (2010) Genotypes, haplotypes and diplotypes of three XPC polymorphisms in urinary-bladder cancer patients. Mutat Res 694:39–44

    PubMed  Google Scholar 

  • Dominguez-Sola D, Ying CY, Grandori C, Ruggiero L, Chen B, Li M, Galloway DA, Gu W, Gautier J, Dalla-Favera R (2007) Non-transcriptional control of DNA replication by c-Myc. Nature 448:445–451

    PubMed  CAS  Google Scholar 

  • Federico A, Pallante P, Bianco M et al (2009) Chromobox protein homologue 7 protein, with decreased expression in human carcinomas, positively regulates E-cadherin expression by interacting with the histone deacetylase 2 protein. Cancer Res 69:7079–7087

    PubMed  CAS  Google Scholar 

  • Figueroa JD, Malats N, Real FX et al (2007) Genetic variation in the base excision repair pathway and bladder cancer risk. Hum Genet 121:233–242

    PubMed  CAS  Google Scholar 

  • Figueroa JD, Malats N, García-Closas M et al (2008) Bladder cancer risk and genetic variation in AKR1C3 and other metabolizing genes. Carcinogenesis 29:1955–1962

    PubMed  CAS  Google Scholar 

  • Florl AR, Schulz WA (2008) Chromosomal instability in bladder cancer. Arch Toxicol 82:173–182

    PubMed  CAS  Google Scholar 

  • Frank B, Hemminki K, Shanmugam KS et al (2005) Association of death receptor 4 haplotype 626C–683C with an increased breast cancer risk. Carcinogenesis 26:1975–1977

    PubMed  CAS  Google Scholar 

  • Galli P, Cadoni G, Volante M et al (2009) A case-control study on the combined effects of p53 and p73 polymorphisms on head and neck cancer risk in an Italian population. BMC Cancer 9:137

    PubMed  Google Scholar 

  • Gangwar R, Ahirwar D, Mandhani A, Mittal RD (2009a) Do DNA repair genes OGG1, XRCC3 and XRCC7 have an impact on susceptibility to bladder cancer in the North Indian population? Mutat Res 680:56–63

    PubMed  CAS  Google Scholar 

  • Gangwar R, Mandhani A, Mittal RD (2009b) Caspase 9 and caspase 8 gene polymorphisms and susceptibility to bladder cancer in north Indian population. Ann Surg Oncol 16:2028–2034

    PubMed  Google Scholar 

  • Gangwar R, Mandhani A, Mittal RD (2011) Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for urinary bladder cancer in North India. Surgery 149:126–134

    PubMed  Google Scholar 

  • García-Closas M, Malats N, Real FX et al (2006) Genetic variation in the nucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 15:536–542

    PubMed  Google Scholar 

  • García-Closas M, Malats N, Real FX et al (2007) Large-scale evaluation of candidate genes identifies associations between VEGF polymorphisms and bladder cancer risk. PLoS Genet 3:e29

    PubMed  Google Scholar 

  • García-Closas M, Malats N, Silverman D et al (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366(9486):649–659

    PubMed  Google Scholar 

  • Gaudet MM, Gammon MD, Santella RM et al (2005) MnSOD Val-9Ala genotype, pro- and anti-oxidant environmental modifiers, and breast cancer among women on Long Island, New York. Cancer Causes Control 16:1225–1234

    PubMed  Google Scholar 

  • Gehrmann M, Schmidt M, Brase JC, Roos P, Hengstler JG (2008) Prediction of paclitaxel resistance in breast cancer: is CYP1B1*3 a new factor of influence? Pharmacogenomics 9:969–974

    PubMed  Google Scholar 

  • Golka K, Prior V, Blaszkewicz M et al (1996) Occupational history and genetic N-acetyltransferase polymorphism in urothelial cancer patients of Leverkusen, Germany. Scand J Work Environ Health 22:332–338

    PubMed  CAS  Google Scholar 

  • Golka K, Kopps S, Myslak ZW (2004) Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett 151:203–210

    PubMed  CAS  Google Scholar 

  • Golka K, Hermes M, Selinski S et al (2009) Susceptibility to urinary bladder cancer: relevance of rs9642880[T], GSTM1 0/0 and occupational exposure. Pharmacogenet Genomics 19:903–906

    PubMed  CAS  Google Scholar 

  • Gómez-Baldó L, Schmidt S, Maxwell CA et al. (2010) TACC3-TSC2 maintains nuclear envelope structure and controls cell division. Cell Cycle 9(6) (Epub ahead of print)

  • Halperin E, Stephan DA (2009a) SNP imputation in association studies. Nat Biotechnol 27:349–351

    PubMed  CAS  Google Scholar 

  • Halperin E, Stephan DA (2009b) Maximizing power in association studies. Nat Biotechnol 27:255–256

    PubMed  CAS  Google Scholar 

  • Hao K, Chudin E, McElwee J, Schadt EE (2009) Accuracy of genome-wide imputation of untyped markers and impacts on statistical power for association studies. BMC Genet 10:27

    PubMed  Google Scholar 

  • Haq I, Chappell S, Johnson SR et al (2010) Association of MMP-2 polymorphisms with severe and very severe COPD: a case control study of MMPs-1, 9 and 12 in a European population. BMC Med Genet 11:7

    PubMed  Google Scholar 

  • Harries LW, Stubbins MJ, Forman D, Howard GC, Wolf CR (1997) Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18:641–644

    PubMed  CAS  Google Scholar 

  • Hazra A, Chamberlain RM, Grossman HB, Zhu Y, Spitz MR, Wu X (2003) Death receptor 4 and bladder cancer risk. Cancer Res 63:1157–1159

    PubMed  CAS  Google Scholar 

  • Hebbring SJ, Adjei AA, Baer JL et al (2007) Human SULT1A1 gene: copy number differences and functional implications. Hum Mol Genet 16:463–470

    PubMed  CAS  Google Scholar 

  • Hellwig B, Hengstler JG, Schmidt M, Gehrmann MC, Schormann W, Rahnenführer J (2010) Comparison of scores for bimodality of gene expression distributions and genome-wide evaluation of the prognostic relevance of high-scoring genes. BMC Bioinformatics 11:276

    PubMed  Google Scholar 

  • Hengstler JG, Arand M, Herrero ME, Oesch F (1998) Polymorphisms of N-acetyltransferases, glutathione S-transferases, microsomal epoxide hydrolase and sulfotransferases: influence on cancer susceptibility. Recent Results Cancer Res 154:47–85

    PubMed  CAS  Google Scholar 

  • Hengstler JG, Utesch D, Steinberg P et al (2000) Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab Rev 32:81–118

    PubMed  CAS  Google Scholar 

  • Hewitt NJ, Lechón MJ, Houston JB et al (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234

    PubMed  CAS  Google Scholar 

  • Hindorff LA, Sethupathy P, Junkins HA et al (2009) Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106:9362–9367

    PubMed  CAS  Google Scholar 

  • Huang L, Li Y, Singleton AB, Hardy JA, Abecasis G, Rosenberg NA, Scheet P (2009) Genotype-imputation accuracy across worldwide human populations. Am J Hum Genet 84:235–250

    PubMed  CAS  Google Scholar 

  • Human Arylamine N-Acetyltransferase Gene Nomenclature (2010) http://louisville.edu/medschool/pharmacology/consensus-human-arylamine-n-acetyltransferase-gene-nomenclature/

  • Hung RJ, Boffetta P, Brennan P et al (2004) GST, NAT, SULT1A1, CYP1B1 genetic polymorphisms, interactions with environmental exposures and bladder cancer risk in a high-risk population. Int J Cancer 110:598–604

    PubMed  CAS  Google Scholar 

  • Johne A, Roots I, Brockmöller J (2003) A single nucleotide polymorphism in the human H-ras proto-oncogene determines the risk of urinary bladder cancer. Cancer Epidemiol Biomarkers Prev 12:68–70

    PubMed  CAS  Google Scholar 

  • Keegan K, Johnson DE, Williams LT, Hayman MJ (1991) Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3. Proc Nat Acad Sci USA 88:1095–1099

    PubMed  CAS  Google Scholar 

  • Kempkes M, Golka K, Reich S, Reckwitz T, Bolt HM (1996) Glutathione S-transferase GSTM1 and GSTT1 null genotypes as potential risk factors for urothelial cancer of the bladder. Arch Toxicol 71:123–126

    PubMed  CAS  Google Scholar 

  • Kiemeney LA, van Houwelingen KP, Bogaerts M et al (2006) Polymorphisms in the E-cadherin (CDH1) gene promoter and the risk of bladder cancer. Eur J Cancer 42:3219–3227

    PubMed  CAS  Google Scholar 

  • Kiemeney LA, Thorlacius S, Sulem P et al (2008) Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet 40:1307–1312

    PubMed  CAS  Google Scholar 

  • Kiemeney LA, Sulem P, Besenbacher S et al (2010) A sequence variant at 4p16.3 confers susceptibility to urinary bladder cancer. Nat Genet 42:415–419

    PubMed  CAS  Google Scholar 

  • Koff A, Cross F, Fisher A et al (1991) Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66:1217–1228

    PubMed  CAS  Google Scholar 

  • Kotsopoulos J, Vitonis AF, Terry Kl et al (2009) Coffee intake, variants in genes involved in caffeine metabolism, and the risk of epithelial ovarian cancer. Cancer Causes Control 20:335–344

    PubMed  Google Scholar 

  • Lee JM, Park S, Shin DJ et al (2009) Relation of genetic polymorphisms in the cytochrome P450 gene with clopidogrel resistance after drug-eluting stent implantation in Koreans. Am J Cardiol 104:46–51

    PubMed  CAS  Google Scholar 

  • Lefkimmiatis K, Caratozzolo MF, Merlo P et al (2009) p73 and p63 sustain cellular growth by transcriptional activation of cell cycle progression genes. Cancer Res 69:8563–8571

    PubMed  CAS  Google Scholar 

  • Lehmann ML, Selinski S, Blaszkewicz M et al (2010) Rs710521[A] on chromosome 3q28 close to TP63 is associated with increased urinary bladder cancer risk. Arch Toxicol 84:967–978

    PubMed  CAS  Google Scholar 

  • Leibovici D, Grossman HB, Dinney CP et al (2005) Polymorphisms in inflammation genes and bladder cancer: from initiation to recurrence, progression, and survival. J Clin Oncol 23:5746–5756

    PubMed  CAS  Google Scholar 

  • Li C, Wu W, Liu J et al (2006) Functional polymorphisms in the promoter regions of the FAS and FAS ligand genes and risk of bladder cancer in south China: a case–control analysis. Pharmacogenet Genomics 16:245–251

    PubMed  CAS  Google Scholar 

  • Li CP, Zhu YJ, Chen R et al (2007) Functional polymorphisms of JWA gene are associated with risk of bladder cancer. J Toxicol Environ Health A 70:876–884

    PubMed  CAS  Google Scholar 

  • Li DB, Wei X, Jiang LH, Wang Y, Xu F (2010) Meta-analysis of epidemiological studies of association of P53 codon 72 polymorphism with bladder cancer. Genet Mol Res 9:1599–1605

    PubMed  CAS  Google Scholar 

  • Li Y, Zheng T, Kilfoy BA et al (2010a) Genetic polymorphisms in cytochrome P450s, GSTs, NATs, alcohol consumption and risk of non-Hodgkin lymphoma. Am J Hematol 85:213–215

    PubMed  Google Scholar 

  • Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR (2010b) MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet Epidemiol 34:816–834

    Google Scholar 

  • Lin GF, Guo WC, Chen JG et al (2005) An association of UDP-glucuronosyltransferase 2B7 C802T (His268Tyr) polymorphism with bladder cancer in benzidine-exposed workers in China. Toxicol Sci 85:502–506

    PubMed  CAS  Google Scholar 

  • Liu Z, Li G, Wei S et al (2010) Genetic variations in TERT-CLPTM1L genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis 31:1977–1981

    PubMed  CAS  Google Scholar 

  • Lo YL, Jou YS, Hsiao CF et al (2009) A polymorphism in the APE1 gene promoter is associated with lung cancer risk. Cancer Epidemiol Biomarkers Prev 18:223–229

    PubMed  CAS  Google Scholar 

  • Lu C, Dong J, Ma H et al (2009) CCND1 G870A polymorphism contributes to breast cancer susceptibility: a meta-analysis. Breast Cancer Res Treat 116:571–575

    PubMed  CAS  Google Scholar 

  • Maalej A, Petit-Teixeira E, Michou L, Rebai A, Cornelis F, Ayadi H (2005) Association study of VDR gene with rheumatoid arthritis in the French population. Genes Immun 6:707–711

    PubMed  CAS  Google Scholar 

  • Manchanda PK, Bid HK, Mittal RD (2006) Association of urokinase gene 3′-UTR T/C polymorphism with bladder cancer. Urol Int 77:81–84

    PubMed  CAS  Google Scholar 

  • Marchini J, Howie B (2008) Comparing algorithms for genotype imputation. Am J Hum Genet 83:535–539

    PubMed  Google Scholar 

  • Marchini J, Howie B, Myers S, McVean G, Donnelly P (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913

    PubMed  CAS  Google Scholar 

  • Marsh HP, Haldar NA, Bunce M et al (2003) Polymorphisms in tumour necrosis factor (TNF) are associated with risk of bladder cancer and grade of tumour at presentation. Br J Cancer 89:1096–1110

    PubMed  CAS  Google Scholar 

  • Mateuca RA, Roelants M, Iarmarcovai G et al (2008) hOGG1(326), XRCC1(399) and XRCC3(241) polymorphisms influence micronucleus frequencies in human lymphocytes in vivo. Mutagenesis 23:35–41

    PubMed  CAS  Google Scholar 

  • Matullo G, Guarrera S, Sacerdote C et al (2005) Polymorphisms/haplotypes in DNA repair genes and smoking: a bladder cancer case–control study. Cancer Epidemiol Biomarkers Prev 14:2569–2578

    PubMed  CAS  Google Scholar 

  • Michiels S, Laplanche A, Boulet T et al (2009) Genetic polymorphisms in 85 DNA repair genes and bladder cancer risk. Carcinogenesis 30:763–768

    PubMed  CAS  Google Scholar 

  • Mittal RD, Manchanda PK, Bhat S, Bid HK (2007) Association of vitamin-D receptor (Fok-I) gene polymorphism with bladder cancer in an Indian population. BJU Int 99:933–937

    PubMed  CAS  Google Scholar 

  • Mølle I, Ostergaard M, Melsvik D, Nyvold CG (2008) Infectious complications after chemotherapy and stem cell transplantation in multiple myeloma: implications of Fc gamma receptor and myeloperoxidase promoter polymorphisms. Leuk Lymphoma 49:1116–1122

    Google Scholar 

  • Moore LE, Malats N, Rothman N et al (2007) Polymorphisms in one-carbon metabolism and trans-sulfuration pathway genes and susceptibility to bladder cancer. Int J Cancer 120:2452–2458

    PubMed  CAS  Google Scholar 

  • Mouse Genome Sequencing Consortium, Waterston RH, Lindblad-Toh K, Birney E et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    PubMed  CAS  Google Scholar 

  • Narter KF, Agachan B, Sozen S, Cincin ZB, Isbir T (2010) CCR2-64I is a risk factor for development of bladder cancer. Genet Mol Res 9:685–692

    PubMed  CAS  Google Scholar 

  • NCBI Single Nucleoide Polymorphism (2010) http://www.ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?geneId=1580

  • Nicolae DL (2006) Testing untyped alleles (TUNA)—applications to genome-wide association studies. Genet Epidemiol 30:718–727

    PubMed  Google Scholar 

  • Nonomura N, Tokizane T, Nakayama M et al (2006) Possible correlation between polymorphism in the tumor necrosis factor-beta gene and the clinicopathological features of bladder cancer in Japanese patients. Int J Urol 13:971–976

    PubMed  CAS  Google Scholar 

  • Nyquist PA, Winkler CA, McKenzie LM, Yanek LR, Becker LC, Becker DM (2009) Single nucleotide polymorphisms in monocyte chemoattractant protein-1 and its receptor act synergistically to increase the risk of carotid atherosclerosis. Cerebrovasc Dis 28:124–130

    PubMed  CAS  Google Scholar 

  • Onat OE, Tez M, Ozçelik T, Törüner GA (2006) MDM2 T309G polymorphism is associated with bladder cancer. Anticancer Res 26:3473–3475

    PubMed  CAS  Google Scholar 

  • Oscarson M (2001) Genetic polymorphisms in the cytochrome P450 2A6 (CYP2A6) gene: implications for interindividual differences in nicotine metabolism. Drug Metab Dispos 29:91–95

    PubMed  CAS  Google Scholar 

  • Ott N, Geddert H, Sarbia M (2008) Polymorphisms in methionine synthase (A2756G) and cystathionine beta-synthase (844ins68) and susceptibility to carcinomas of the upper gastrointestinal tract. J Cancer Res Clin Oncol 134:405–410

    PubMed  CAS  Google Scholar 

  • Ouerhani S, Oliveira E, Marrakchi R et al (2007) Methylenetetrahydrofolate reductase and methionine synthase polymorphisms and risk of bladder cancer in a Tunisian population. Cancer Genet Cytogenet 176:48–53

    PubMed  CAS  Google Scholar 

  • Pabalan N, Francisco-Pabalan O, Sung L, Jarjanazi H, Ozcelik H (2010) Meta-analysis of two ERCC2 (XPD) polymorphisms, Asp312Asn and Lys751Gln, in breast cancer. Breast Cancer Res Treat 124:531–541

    PubMed  CAS  Google Scholar 

  • Park JY, Lee WK, Jung DK et al (2009) Polymorphisms in the FAS and FASL genes and survival of early stage non-small cell lung cancer. Clin Cancer Res 15:1794–1800

    PubMed  CAS  Google Scholar 

  • Park SL, Bastani D, Goldstein BY et al (2010) Associations between NBS1 polymorphisms, haplotypes and smoking-related cancers. Carcinogenesis 31:1264–1271

    PubMed  CAS  Google Scholar 

  • Parkin DM (2008) The global burden of urinary bladder cancer. Scand J Urol Nephrol Suppl 12–20

  • Pavanello S, Mastrangelo G, Placidi D et al (2010) CYP1A2 polymorphisms, occupational and environmental exposures and risk of bladder cancer. Eur J Epidemiol 25:491–500

    PubMed  CAS  Google Scholar 

  • Paz-y-Miño C, Muñoz MJ, López-Cortés A et al (2010) Frequency of polymorphisms pro198leu in GPX-1 gene and ile58thr in MnSOD gene in the altitude Ecuadorian population with bladder cancer. Oncol Res 18:395–400

    PubMed  Google Scholar 

  • Pei YF, Li J, Zhang L, Papasian CJ, Deng HW (2008) Analyses and comparison of accuracy of different genotype imputation methods. PLoS One 3(10):e3551

    PubMed  Google Scholar 

  • Pei YF, Zhang L, Li J, Deng HW (2010) Analyses and comparison of imputation-based association methods. PLoS One 5(5):e10827

    PubMed  Google Scholar 

  • Pharmacogenomics Knowledge Base (2010) http://www.pharmgkb.org/

  • Pinto LA, Depner M, Klopp N et al (2010) MMP-9 gene variants increase the risk for non-atopic asthma in children. Respir Res 11:23

    PubMed  Google Scholar 

  • Pittman AM, Broderick P, Sullivan K et al (2008) CASP8 variants D302H and −652 6N ins/del do not influence the risk of colorectal cancer in the United Kingdom population. Br J Cancer 98:1434–1436

    PubMed  CAS  Google Scholar 

  • Platek ME, Shields PG, Marian C et al (2009) Alcohol consumption and genetic variation in methylenetetrahydrofolate reductase and 5-methyltetrahydrofolate-homocysteine methyltransferase in relation to breast cancer risk. Cancer Epidemiol Biomarkers Prev 18:2453–2459

    PubMed  CAS  Google Scholar 

  • Prieto-Castelló MJ, Cardona A, Marhuenda D, Roel JM, Corno A (2010) Use of the CYP2E1 genotype and phenotype for the biological monitoring of occupational exposure to styrene. Toxicol Lett 192:34–39

    PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    PubMed  CAS  Google Scholar 

  • Puthothu B, Bierbaum S, Kopp MV et al (2009) Association of TNF-alpha with severe respiratory syncytial virus infection and bronchial asthma. Pediatr Allergy Immunol 20:157–163

    PubMed  Google Scholar 

  • Rafnar T, Sulem P, Stacey SN et al (2009) Sequence variants at the TERT-CLPTM1L locus associate with many cancer types. Nat Genet 41:221–227

    PubMed  CAS  Google Scholar 

  • Reddy BM, Reddy ANS, Nagaraja T et al (2006) Single nucleotide polymorphisms of the alcohol dehydrogenase genes among the 28 caste and tribal populations of India. Int J Hum Genet 6:309–316

    CAS  Google Scholar 

  • Reddy P, Naidoo RN, Robins TG et al (2010) GSTM1, GSTP1, and NQO1 polymorphisms and susceptibility to atopy and airway hyperresponsiveness among South African schoolchildren. Lung 188:409–414

    PubMed  Google Scholar 

  • Reif DM (2006) Integrated analysis of genetic and proteomic data. Dissertation, Nashville, TN

  • Ricceri F, Guarrera S, Sacerdote C et al (2010) ERCC1 haplotypes modify bladder cancer risk: a case–control study. DNA Repair 9:191–200

    PubMed  CAS  Google Scholar 

  • Rothman N, García-Closas M, Chatterjee N et al (2010) A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci. Nat Genet 42:978–984

    PubMed  CAS  Google Scholar 

  • Rouguieg K, Picard N, Sauvage FL, Gaulier JM, Marquet P (2010) Contribution of the different UDP-glucuronosyltransferase (UGT) isoforms to buprenorphine and norbuprenorphine metabolism and relationship with the main UGT polymorphisms in a bank of human liver microsomes. Drug Metab Dispos 38:40–45

    PubMed  CAS  Google Scholar 

  • Safarinejad MR, Shafiei N, Safarinejad S (2010) Genetic susceptibility of methylenetetrahydrofolate reductase (MTHFR) gene C677T, A1298C, and G1793A polymorphisms with risk for bladder transitional cell carcinoma in men. Med Oncol (29 Oct 2010, Epub ahead of print)

  • Safarinejad MR, Shafiei N, Safarinejad S (2011) The association between bladder cancer and a single nucleotide polymorphism (rs2854744) in the insulin-like growth factor (IGF) binding protein-3 (IGFBP-3) gene. Arch Toxicol (in press)

  • Saravana Devi S, Vinayagamoorthy N, Agrawal M et al (2008) Distribution of detoxifying genes polymorphism in Maharastrian population of central India. Chemosphere 700:1835–1839

    Google Scholar 

  • Sasaki T, Horikawa M, Orikasa K et al (2008) Possible relationship between the risk of Japanese bladder cancer cases and the CYP4B1 genotype. Jpn J Clin Oncol 38:634–640

    PubMed  Google Scholar 

  • Savage SA, Hou L, Lissowska J et al (2006) Interleukin-8 polymorphisms are not associated with gastric cancer risk in a Polish population. Cancer Epidemiol Biomarkers Prev 15:589–591

    PubMed  CAS  Google Scholar 

  • Sayan BS, Sayan AE, Yang AL et al (2007) Cleavage of the transactivation-inhibitory domain of p63 by caspases enhances apoptosis. Proc Natl Acad Sci USA 104:10871–10876

    PubMed  CAS  Google Scholar 

  • Scheet P, Stephens M (2006) A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet 78:629–644

    PubMed  CAS  Google Scholar 

  • Schnakenberg E, Breuer R, Werdin R, Dreikorn K, Schloot W (2000) Susceptibility genes: GSTM1 and GSTM3 as genetic risk factors in bladder cancer. Cytogenet Cell Genet 91:234–238

    PubMed  CAS  Google Scholar 

  • Servin B, Stephens M (2007) Imputation-based analysis of association studies: candidate regions and quantitative traits. PLoS Genet 3:e114

    PubMed  Google Scholar 

  • Shao J, Gu M, Xu Z, Hu Q, Qian L (2007) Polymorphisms of the DNA gene XPD and risk of bladder cancer in a Southeastern Chinese population. Cancer Genet Cytogenet 177:30–36

    PubMed  CAS  Google Scholar 

  • Shi WX, Chen SQ (2004) Frequencies of poor metabolizers of cytochrome P450 2C19 in esophagus cancer, stomach cancer, lung cancer and bladder cancer in Chinese population. World J Gastroenterol 10:1961–1963

    PubMed  CAS  Google Scholar 

  • Shih CM, Kuo WH, Lin CW et al (2011) Association of polymorphisms in the genes of the urokinase plasminogen activation system with susceptibility to and severity of non-small cell lung cancer. Clin Chim Acta 412:194–198

    PubMed  CAS  Google Scholar 

  • Skjelbred CF, Saebø M, Wallin H et al (2006) Polymorphisms of the XRCC1, XRCC3 and XPD genes and risk of colorectal adenoma and carcinoma, in a Norwegian cohort: a case control study. BMC Cancer 6:67

    PubMed  Google Scholar 

  • Slattery ML, Wolff RK, Herrick JS, Caan BJ, Potter JD (2007) IL6 genotypes and colon and rectal cancer. Cancer Causes Control 18:1095–1105

    PubMed  Google Scholar 

  • Song DK, Xing DL, Zhang LR, Li ZX, Liu J, Qiao BP (2009) Association of NAT2, GSTM1, GSTT1, CYP2A6, and CYP2A13 gene polymorphisms with susceptibility and clinicopathologic characteristics of bladder cancer in Central China. Cancer Detect Prev 32:416–423

    PubMed  CAS  Google Scholar 

  • Srivastava DS, Mandhani A, Mittal RD (2008) Genetic polymorphisms of cytochrome P450 CYP1A1 (*2A) and microsomal epoxide hydrolase gene, interactions with tobacco-users, and susceptibility to bladder cancer: a study from North India. Arch Toxicol 82:633–639

    PubMed  CAS  Google Scholar 

  • Srivastava P, Gangwar R, Kapoor R, Mittal RD (2010a) Bladder cancer risk associated with genotypic polymorphism of the matrix metalloproteinase-1 and 7 in North Indian population. Dis Markers 29:37–46

    PubMed  CAS  Google Scholar 

  • Srivastava P, Mandhani A, Kapoor R, Mittal RD (2010b) Role of MMP-3 and MMP-9 and their haplotypes in risk of bladder cancer in North Indian cohort. Ann Surg Oncol 17:3068–3075

    PubMed  Google Scholar 

  • Stern MC, Lin J, Figueroa JD et al (2009) Polymorphisms in DNA repair genes, smoking, and bladder cancer risk: findings from the international consortium of bladder cancer. Cancer Res 69:6857–6864

    PubMed  CAS  Google Scholar 

  • Strassburg CP, Lankisch TO, Manns MP, Ehmer U (2008) Family 1 uridine-5′-diphosphate glucuronosyltransferases (UGT1A): from Gilbert’s syndrome to genetic organization and variability. Arch Toxicol 82:415–433

    PubMed  CAS  Google Scholar 

  • Su L, Zhou W, Asomaning K et al (2006) Genotypes and haplotypes of MMP-1, -3 and -12 genes and the risk of lung cancer. Proc Am Assoc Cancer Res 47:437

    Google Scholar 

  • Sun P, Qiu Y, Zhang Z et al (2009) Association of genetic polymorphisms, mRNA expression of p53 and p21 with chronic benzene poisoning in a Chinese occupational population. Cancer Epidemiol Biomarkers Prev 18:1821–1828

    PubMed  CAS  Google Scholar 

  • Sun H, Qiao Y, Zhang X et al (2010) XRCC3 Thr241Met polymorphism with lung cancer and bladder cancer: a meta-analysis. Cancer Sci 101:1777–1782

    PubMed  CAS  Google Scholar 

  • Tang T, Cui S, Deng X et al (2010) Insertion/deletion polymorphism in the promoter region of NFKB1 gene increases susceptibility for superficial bladder cancer in Chinese. DNA Cell Biol 29:9–12

    PubMed  Google Scholar 

  • Tranah GJ, Giovannucci E, Ma J, Fuchs C, Hankinson SE, Hunter DJ (2004) Epoxide hydrolase polymorphisms, cigarette smoking and risk of colorectal adenoma in the Nurses’ Health Study and the Health Professionals Follow-up Study. Carcinogenesis 25:1211–1218

    PubMed  CAS  Google Scholar 

  • Tsironi EE, Pefkianaki M, Tsezou A et al (2009) Evaluation of MMP1 and MMP3 gene polymorphisms in exfoliation syndrome and exfoliation glaucoma. Mol Vis 15:2890–2895

    PubMed  CAS  Google Scholar 

  • van Dijk B, van Houwelingen KP, Witjes JA, Schalken JA, Kiemeney LA (2001) Alcohol dehydrogenase type 3 (ADH3) and the risk of bladder cancer. Eur Urol 40:509–514

    PubMed  Google Scholar 

  • Varghese JS, Easton DF (2010) Genome-wide association studies in common cancers—what have we learnt? Curr Opin Genet Dev 20:201–209

    PubMed  CAS  Google Scholar 

  • Vartanian J-P, Guetard D, Henry M, Wain-Hobson S (2008) Evidence for editing of human papillomavirus DNA by APOBEC3 in benign and precancerous lesions. Science 320:230–233

    PubMed  CAS  Google Scholar 

  • Verhaegh GW, Verkleij L, Vermeulen SH, den Heijer M, Witjes JA, Kiemeney LA (2008) Polymorphisms in the H19 gene and the risk of bladder cancer. Eur Urol 54:1118–1126

    PubMed  CAS  Google Scholar 

  • Verlaan M, Te Morsche RH, Roelofs HM et al (2004) Genetic polymorphisms in alcohol-metabolizing enzymes and chronic pancreatitis. Alcohol Alcohol 39:20–24

    Google Scholar 

  • Visel A, Rubin EM, Pennacchio LA (2009) Genomic views of distant-acting enhancers. Nature 461(7261):199–205

    PubMed  CAS  Google Scholar 

  • Wang M, Zhang Z, Zhu H et al (2008) A novel functional polymorphism C1797G in the MDM2 promoter is associated with risk of bladder cancer in a Chinese population. Clin Cancer Res 14:3633–3640

    PubMed  CAS  Google Scholar 

  • Wang HC, Liu CS, Chiu CF et al (2009a) Significant association of DNA repair gene Ku80 genotypes with breast cancer susceptibility in Taiwan. Anticancer Res 29:5251–5254

    PubMed  CAS  Google Scholar 

  • Wang M, Zhang Z, Tian Y, Shao J, Zhang Z (2009b) A six-nucleotide insertion-deletion polymorphism in the CASP8 promoter associated with risk and progression of bladder cancer. Clin Cancer Res 15:2567–2572

    PubMed  CAS  Google Scholar 

  • Wang M, Wang M, Cheng G, Zhang Z, Fu G, Zhang Z (2009c) Genetic variants in the death receptor 4 gene contribute to susceptibility to bladder cancer. Mutat Res 661:85–92

    PubMed  CAS  Google Scholar 

  • Wang M, Qin C, Zhu J et al (2010a) Genetic variants of XRCC1, APE1, and ADPRT genes and risk of bladder cancer. DNA Cell Biol 29:303–311

    PubMed  CAS  Google Scholar 

  • Wang M, Wang M, Yuan L et al (2010b) A novel XPF -357A>C polymorphism predicts risk and recurrence of bladder cancer. Oncogene 29:1920–1928

    PubMed  CAS  Google Scholar 

  • Wang S, Tang J, Wang M, Yuan L, Zhang Z (2010c) Genetic variation in PSCA and bladder cancer susceptibility in a Chinese population. Carcinogenesis 31:621–624

    PubMed  Google Scholar 

  • Watabe T, Lin M, Ide H et al (2002) Growth, regeneration, and tumorigenesis of the prostate activates the PSCA promoter. Proc Natl Acad Sci USA 99:401–406

    PubMed  CAS  Google Scholar 

  • Wen H, Ding Q, Fang ZJ, Xia GW, Fang J (2009) Population study of genetic polymorphisms and superficial bladder cancer risk in Han-Chinese smokers in Shanghai. Int Urol Nephrol 41:855–864

    PubMed  Google Scholar 

  • Wolf S, Mertens D, Pscherer A et al (2006) Ala228 variant of trail receptor 1 affecting the ligand binding site is associated with chronic lymphocytic leukemia, mantle cell lymphoma, prostate cancer, head and neck squamous cell carcinoma and bladder cancer. Int J Cancer 118:1831–1835

    PubMed  CAS  Google Scholar 

  • Wu X, Gu J, Grossman HB et al (2006) Bladder cancer predisposition: a multigenic approach to DNA-repair and cell-cycle-control genes. Am J Hum Genet 78:464–479

    PubMed  CAS  Google Scholar 

  • Wu X, Ye Y, Kiemeney LA, Sulem P et al (2009) Genetic variation in the prostate stem cell antigen gene PSCA confers susceptibility to urinary bladder cancer. Nat Genet 41:991–995

    PubMed  CAS  Google Scholar 

  • Yang H, Gu J, Lin X et al (2008) Profiling of genetic variations in inflammation pathway genes in relation to bladder cancer predisposition. Clin Cancer Res 14:2236–2244

    PubMed  CAS  Google Scholar 

  • Yang JJ, Ko KP, Cho LY et al (2009) The role of TNF genetic variants and the interaction with cigarette smoking for gastric cancer risk: a nested case–control study. BMC Cancer 9:238

    PubMed  Google Scholar 

  • Yang W, Qi Q, Zhang H et al (2010) p21 Waf1/Cip1 polymorphisms and risk of esophageal cancer. Ann Surg Oncol 17:1453–1458

    PubMed  Google Scholar 

  • Yu Z, Schaid DJ (2007) Methods to impute missing genotypes for population data. Hum Genet 122:495–504

    PubMed  Google Scholar 

  • Yuan L, Gu X, Shao J et al (2010) Cyclin D1 G870A polymorphism is associated with risk and clinicopathologic characteristics of bladder cancer. DNA Cell Biol 29:611–617

    PubMed  CAS  Google Scholar 

  • Zhang Y, Jin M, Liu B et al (2008a) Association between H-RAS T81C genetic polymorphism and gastrointestinal cancer risk: a population based case–control study in China. BMC Cancer 8:256

    PubMed  Google Scholar 

  • Zhang Z, Wang S, Wang M, Tong N, Fu G, Zhang Z (2008b) Genetic variants in RUNX3 and risk of bladder cancer: a haplotype-based analysis. Carcinogenesis 29:1973–1978

    PubMed  CAS  Google Scholar 

  • Zheng L, Wang Y, Schabath MB, Grossman HB, Wu X (2003) Sulfotransferase 1A1 (SULT1A1) polymorphism and bladder cancer risk: a case–control study. Cancer Lett 202:61–69

    PubMed  CAS  Google Scholar 

  • Zhou P, Li JP, Zhang C (2011) Polymorphisms of tumor necrosis factor-alpha and breast cancer risk: appraisal of a recent meta-analysis. Breast Cancer Res Treat 126:253–256

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Susanne Lindemann for helpful bibliographic work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Klaus Golka or Jan G. Hengstler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 319 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golka, K., Selinski, S., Lehmann, ML. et al. Genetic variants in urinary bladder cancer: collective power of the “wimp SNPs”. Arch Toxicol 85, 539–554 (2011). https://doi.org/10.1007/s00204-011-0676-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-011-0676-3

Keywords

Navigation