Skip to main content

Advertisement

Log in

Independent association of bone mineral density and trabecular bone score to vertebral fracture in male subjects with chronic obstructive pulmonary disease

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Osteoporosis is a major comorbidity of chronic obstructive pulmonary disease (COPD), but the mechanism of bone fragility is unknown. We demonstrated that trabecular bone score, a parameter of bone quality, was associated with systemic inflammation and was a significant determinant of vertebral fracture independent of bone mineral density.

Introduction

COPD is a major cause of secondary osteoporosis. However, the mechanism of bone fragility is unclear. We previously reported that vertebral fracture was highly prevalent in male COPD patients. To obtain clues to the mechanism of COPD-associated osteoporosis, we attempted to identify determinants of prevalent vertebral fracture in this study.

Methods

In this cross-sectional study, we recruited 61 COPD males and examined pulmonary function, vertebral fractures, bone mineral density (BMD), trabecular bone score (TBS), bone turnover markers, and inflammatory parameters. Determinants of the bone parameters were examined by multivariable analyses.

Results

The prevalence of any and grade 2 or 3 fractures was 75.4 and 19.7%, respectively. Osteoporosis and osteopenia defined by BMD were present in 37.7 and 39.3%, respectively. TBS was significantly lower in higher Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages compared to GOLD 1. Multivariable logistic regression analysis revealed that both TBS and BMD were independent determinants of grade 2 or 3 vertebral fractures (OR = 0.271, 95%CI 0.083–0.888, p = 0.031; OR = 0.242, 95%CI 0.075–0.775, p = 0.017) after adjustment for age. Correlates of TBS included age, BMD, high-sensitivity C-reactive protein (hsCRP), pulmonary function parameters, parathyroid hormone, and Tracp-5b. In multivariable regression analysis, hsCRP was the only independent determinant of TBS besides age and BMD. In contrast, independent determinants of BMD included body mass index and, to a lesser extent, 25-hydroxyvitamin D.

Conclusion

Both BMD and TBS were independently associated with grade 2 or 3 vertebral fracture in COPD male subjects, involving distinct mechanisms. Systemic inflammation, as reflected by increased hsCRP levels, may be involved in deterioration of the trabecular microarchitecture in COPD-associated osteoporosis, whereas BMD decline is most strongly associated with weight loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Decramer M, Janssens W, Miravitlles M (2012) Chronic obstructive pulmonary disease. Lancet 379(9823):1341–1351. https://doi.org/10.1016/s0140-6736(11)60968-9

    Article  PubMed  Google Scholar 

  2. Romme EA, Geusens P, Lems WF, Rutten EP, Smeenk FW, van den Bergh JP, van Hal PT, Wouters EF (2015) Fracture prevention in COPD patients; a clinical 5-step approach. Respir Res 16(1):32. https://doi.org/10.1186/s12931-015-0192-8

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sarkar M, Bhardwaj R, Madabhavi I, Khatana J (2015) Osteoporosis in chronic obstructive pulmonary disease. Clin Med Insights Circ Respir Pulm Med 9:5–21. https://doi.org/10.4137/ccrpm.s22803

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vestergaard P, Rejnmark L, Mosekilde L (2007) Fracture risk in patients with chronic lung diseases treated with bronchodilator drugs and inhaled and oral corticosteroids. Chest 132(5):1599–1607. https://doi.org/10.1378/chest.07-1092

    Article  CAS  PubMed  Google Scholar 

  5. Regan EA, Radcliff TA, Henderson WG, Cowper Ripley DC, Maciejewski ML, Vogel WB, Hutt E (2013) Improving hip fractures outcomes for COPD patients. COPD 10(1):11–19. https://doi.org/10.3109/15412555.2012.723072

    Article  PubMed  Google Scholar 

  6. Morden NE, Sullivan SD, Bartle B, Lee TA (2011) Skeletal health in men with chronic lung disease: rates of testing, treatment, and fractures. Osteoporos Int 22(6):1855–1862. https://doi.org/10.1007/s00198-010-1423-y

    Article  CAS  PubMed  Google Scholar 

  7. Hippisley-Cox J, Coupland C (2012) Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: prospective open cohort study. BMJ 344(may22 1):e3427. https://doi.org/10.1136/bmj.e3427

    Article  PubMed  Google Scholar 

  8. Dennison EM, Compston JE, Flahive J, Siris ES, Gehlbach SH, Adachi JD, Boonen S, Chapurlat R, Diez-Perez A, Anderson FA Jr, Hooven FH, LaCroix AZ, Lindsay R, Netelenbos JC, Pfeilschifter J, Rossini M, Roux C, Saag KG, Sambrook P, Silverman S, Watts NB, Greenspan SL, Premaor M, Cooper C (2012) Effect of co-morbidities on fracture risk: findings from the Global Longitudinal Study of Osteoporosis in Women (GLOW). Bone 50(6):1288–1293. https://doi.org/10.1016/j.bone.2012.02.639

    Article  PubMed  PubMed Central  Google Scholar 

  9. de Vries F, van Staa TP, Bracke MS, Cooper C, Leufkens HG, Lammers JW (2005) Severity of obstructive airway disease and risk of osteoporotic fracture. Eur Respir J 25(5):879–884. https://doi.org/10.1183/09031936.05.00058204

    Article  PubMed  Google Scholar 

  10. Inoue D, Watanabe R, Okazaki R (2016) COPD and osteoporosis: links, risks, and treatment challenges. Int J Chron Obstruct Pulmon Dis 11:637–648. https://doi.org/10.2147/copd.s79638

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ryan CS, Petkov VI, Adler RA (2011) Osteoporosis in men: the value of laboratory testing. Osteoporos Int 22(6):1845–1853. https://doi.org/10.1007/s00198-010-1421-0

    Article  CAS  PubMed  Google Scholar 

  12. Graat-Verboom L, Wouters EF, Smeenk FW, van den Borne BE, Lunde R, Spruit MA (2009) Current status of research on osteoporosis in COPD: a systematic review. Eur Respir J 34(1):209–218. https://doi.org/10.1183/09031936.50130408

    Article  CAS  PubMed  Google Scholar 

  13. Schnell KM, Weiss CO, Lee T, Krishnan JA, Leff B, Wolff JL, Boyd C (2012) The prevalence of clinically-relevant comorbid conditions in patients with COPD: a cross-sectional study using data from NHANES 1999-2008. BMC Pulm Med 12(1):26. https://doi.org/10.1186/1471-2466-12-26

    Article  PubMed  PubMed Central  Google Scholar 

  14. Watanabe R, Tanaka T, Aita K, Hagiya M, Homma T, Yokosuka K, Yamakawa H, Yarita T, Tai N, Hirano J, Inoue D, Okazaki R (2014) Osteoporosis is highly prevalent in Japanese males with chronic obstructive pulmonary disease and is associated with deteriorated pulmonary function. J Bone Miner Metab 33(4):392–400. https://doi.org/10.1007/s00774-014-0605-7

    Article  PubMed  Google Scholar 

  15. Graat-Verboom L, van den Borne BE, Smeenk FW, Spruit MA, Wouters EF (2011) Osteoporosis in COPD outpatients based on bone mineral density and vertebral fractures. J Bone Miner Res 26(3):561–568. https://doi.org/10.1002/jbmr.257

    Article  PubMed  Google Scholar 

  16. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19(4):385–397. https://doi.org/10.1007/s00198-007-0543-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lorentzon M, Cummings SR (2015) Osteoporosis: the evolution of a diagnosis. J Intern Med 277(6):650–661. https://doi.org/10.1111/joim.12369

    Article  CAS  PubMed  Google Scholar 

  18. NIH Consensus Development Panel on Osteoporosis Prevention D, and Therapy (2001) Osteoporosis prevention, diagnosis, and therapy. JAMA 285(6):785–795. https://doi.org/10.1001/jama.285.6.785

    Article  Google Scholar 

  19. Kulak CA, Borba VC, Jorgetti V, Dos Reis LM, Liu XS, Kimmel DB, Kulak J Jr, Rabelo LM, Zhou H, Guo XE, Bilezikian JP, Boguszewski CL, Dempster DW (2010) Skeletal microstructural abnormalities in postmenopausal women with chronic obstructive pulmonary disease. J Bone Miner Res 25(9):1931–1940. https://doi.org/10.1002/jbmr.88

    Article  PubMed  Google Scholar 

  20. Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, McCloskey EV, Kanis JA, Bilezikian JP (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29(3):518–530. https://doi.org/10.1002/jbmr.2176

    Article  PubMed  Google Scholar 

  21. Hans D, Goertzen AL, Krieg MA, Leslie WD (2011) Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res 26(11):2762–2769. https://doi.org/10.1002/jbmr.499

    Article  PubMed  Google Scholar 

  22. Leslie WD, Krieg MA, Hans D (2013) Clinical factors associated with trabecular bone score. J Clin Densitom 16(3):374–379. https://doi.org/10.1016/j.jocd.2013.01.006

    Article  PubMed  Google Scholar 

  23. Genant HK, CY W, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8(9):1137–1148. https://doi.org/10.1002/jbmr.5650080915

    Article  CAS  PubMed  Google Scholar 

  24. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4(6):368–381. https://doi.org/10.1007/BF01622200

    Article  CAS  PubMed  Google Scholar 

  25. McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, Barkmann R, Boutroy S, Brown J, Chapurlat R, Elders PJ, Fujita Y, Gluer CC, Goltzman D, Iki M, Karlsson M, Kindmark A, Kotowicz M, Kurumatani N, Kwok T, Lamy O, Leung J, Lippuner K, Ljunggren O, Lorentzon M, Mellstrom D, Merlijn T, Oei L, Ohlsson C, Pasco JA, Rivadeneira F, Rosengren B, Sornay-Rendu E, Szulc P, Tamaki J, Kanis JA (2016) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31(5):940–948. https://doi.org/10.1002/jbmr.2734

    Article  PubMed  Google Scholar 

  26. Ulivieri FM, Silva BC, Sardanelli F, Hans D, Bilezikian JP, Caudarella R (2014) Utility of the trabecular bone score (TBS) in secondary osteoporosis. Endocrine 47(2):435–448. https://doi.org/10.1007/s12020-014-0280-4

    Article  CAS  PubMed  Google Scholar 

  27. Bai P, Sun Y, Jin J, Hou J, Li R, Zhang Q, Wang Y (2011) Disturbance of the OPG/RANK/RANKL pathway and systemic inflammation in COPD patients with emphysema and osteoporosis. Respir Res 12(1):157. https://doi.org/10.1186/1465-9921-12-157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liang B, Feng Y (2012) The association of low bone mineral density with systemic inflammation in clinically stable COPD. Endocrine 42(1):190–195. https://doi.org/10.1007/s12020-011-9583-x

    Article  CAS  PubMed  Google Scholar 

  29. ZJ W, He JL, Wei RQ, Liu B, Lin X, Guan J, Lan YB (2015) C-reactive protein and risk of fracture: a systematic review and dose-response meta-analysis of prospective cohort studies. Osteoporos Int 26(1):49–57. https://doi.org/10.1007/s00198-014-2826-y

    Article  Google Scholar 

  30. Eriksson AL, Moverare-Skrtic S, Ljunggren O, Karlsson M, Mellstrom D, Ohlsson C (2014) High-sensitivity CRP is an independent risk factor for all fractures and vertebral fractures in elderly men: the MrOS Sweden study. J Bone Miner Res 29(2):418–423. https://doi.org/10.1002/jbmr.2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tomiyama H, Okazaki R, Koji Y, Usui Y, Hayashi T, Hori S, Yamashina A (2005) Elevated C-reactive protein: a common marker for atherosclerotic cardiovascular risk and subclinical stages of pulmonary dysfunction and osteopenia in a healthy population. Atherosclerosis 178(1):187–192. https://doi.org/10.1016/j.atherosclerosis.2004.08.014

    Article  CAS  PubMed  Google Scholar 

  32. Ahmadi-Abhari S, Luben RN, Wareham NJ, Khaw KT (2013) C-reactive protein and fracture risk: European prospective investigation into Cancer Norfolk Study. Bone 56(1):67–72. https://doi.org/10.1016/j.bone.2013.05.009

    Article  CAS  PubMed  Google Scholar 

  33. Berglundh S, Malmgren L, Luthman H, McGuigan F, Akesson K (2015) C-reactive protein, bone loss, fracture, and mortality in elderly women: a longitudinal study in the OPRA cohort. Osteoporos Int 26(2):727–735. https://doi.org/10.1007/s00198-014-2951-7

    Article  CAS  PubMed  Google Scholar 

  34. Ishii S, Cauley JA, Greendale GA, Crandall CJ, Danielson ME, Ouchi Y, Karlamangla AS (2013) C-reactive protein, bone strength, and nine-year fracture risk: data from the Study of Women’s Health Across the Nation (SWAN). J Bone Miner Res 28(7):1688–1698. https://doi.org/10.1002/jbmr.1915

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Yoshie Fujita for her technical support. We would also like to thank Takeshi Tanaka, Keisuke Aita, Masaaki Hagiya, and Toshiaki Homma at Teikyo University Chiba Medical Center and Kyoko Yokosuka, Hisami Yamakawa, and Tsutomu Yarita at Yarita Hospital for their help in subject recruitment and sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Inoue.

Ethics declarations

The study protocol was approved by an institutional ethical committee and informed consent was obtained from all the participants.

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, R., Tai, N., Hirano, J. et al. Independent association of bone mineral density and trabecular bone score to vertebral fracture in male subjects with chronic obstructive pulmonary disease. Osteoporos Int 29, 615–623 (2018). https://doi.org/10.1007/s00198-017-4314-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4314-7

Keywords

Navigation