Skip to main content

Advertisement

Log in

Effects of obesity and diabetes on rate of bone density loss

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

In this large registry-based study, women with diabetes had marginally greater bone mineral density (BMD) loss at the femoral neck but not at other measurement sites, whereas obesity was not associated with greater BMD loss. Our data do not support the hypothesis that rapid BMD loss explains the increased fracture risk associated with type 2 diabetes and obesity observed in prior studies.

Introduction

Type 2 diabetes and obesity are associated with higher bone mineral density (BMD) which may be less protective against fracture than previously assumed. Inconsistent data suggest that rapid BMD loss may be a contributing factor.

Methods

We examined the rate of BMD loss in women with diabetes and/or obesity in a population-based BMD registry for Manitoba, Canada. We identified 4960 women aged ≥ 40 years undergoing baseline and follow-up BMD assessments (mean interval 4.3 years) without confounding medication use or large weight fluctuation. We calculated annualized rate of BMD change for the lumbar spine, total hip, and femoral neck in relation to diagnosed diabetes and body mass index (BMI) category.

Results

Baseline age-adjusted BMD was greater in women with diabetes and for increasing BMI category (all P < 0.001). In women with diabetes, unadjusted BMD loss was less at the lumbar spine (P = 0.017), non-significantly greater at the femoral neck (P = 0.085), and similar at the total hip (P = 0.488). When adjusted for age and BMI, diabetes was associated with slightly greater femoral neck BMD loss (− 0.0018 g/cm2/year, P = 0.012) but not at the lumbar spine or total hip. There was a strong linear effect of increasing BMI on attenuated BMI loss at the lumbar spine with negligible effects on hip BMD.

Conclusions

Diabetes was associated with slightly greater BMD loss at the femoral neck but not at other measurement sites. BMD loss at the lumbar spine was reduced in overweight and obese women but BMI did not significantly affect hip BMD loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Schwartz AV, Vittinghoff E, Bauer DC, Hillier TA, Strotmeyer ES, Ensrud KE et al (2011) Association of BMD and FRAX score with risk of fracture in older adults with type 2 diabetes. JAMA 305(21):2184–2192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Giangregorio LM, Leslie WD, Lix LM, Johansson H, Oden A, McCloskey E et al (2012) FRAX underestimates fracture risk in patients with diabetes. J Bone Miner Res 27(2):301–308

    Article  PubMed  Google Scholar 

  3. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S et al (2011) Obesity is not protective against fracture in postmenopausal women: GLOW. Am J Med 124(11):1043–1050

    Article  PubMed  PubMed Central  Google Scholar 

  4. Prieto-Alhambra D, Premaor MO, Fina AF, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C et al (2012) The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res 27(2):294–300

    Article  PubMed  Google Scholar 

  5. Ishii S, Cauley JA, Greendale GA, Nielsen C, Karvonen-Gutierrez C, Ruppert K et al (2014) Pleiotropic effects of obesity on fracture risk: the Study of Women’s Health Across the Nation. J Bone Miner Res 29(12):2561–2570

    Article  PubMed  PubMed Central  Google Scholar 

  6. Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV et al (2006) Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes 55(6):1813–1818

    Article  CAS  PubMed  Google Scholar 

  7. Barrett-Connor E, Weiss TW, McHorney CA, Miller PD, Siris ES (2009) Predictors of falls among postmenopausal women: results from the National Osteoporosis Risk Assessment (NORA). Osteoporos Int 20(5):715–722

    Article  CAS  PubMed  Google Scholar 

  8. Schwartz AV, Hillier TA, Sellmeyer DE, Resnick HE, Gregg E, Ensrud KE et al (2002) Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care 25(10):1749–1754

    Article  PubMed  Google Scholar 

  9. Beck TJ, Petit MA, Wu G, Leboff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the Women’s Health Initiative Observational Study. J Bone Miner Res 24(8):1369–1379

    Article  PubMed  PubMed Central  Google Scholar 

  10. Scott D, Seibel M, Cumming R, Naganathan V, Blyth F, Le Couteur DG et al (2017) Sarcopenic obesity and its temporal associations with changes in bone mineral density, incident falls, and fractures in older men: the Concord Health and Ageing in Men Project. J Bone Miner Res 32(3):575–583

    Article  CAS  PubMed  Google Scholar 

  11. Compston J (2013) Obesity and fractures. Joint Bone Spine 80(1):8–10

    Article  PubMed  Google Scholar 

  12. Saito M, Kida Y, Kato S, Marumo K (2014) Diabetes, collagen, and bone quality. Curr Osteoporos Rep 12(2):181–188

    Article  PubMed  Google Scholar 

  13. Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S et al (2010) High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 95(11):5045–5055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwartz AV, Sellmeyer DE, Strotmeyer ES, Tylavsky FA, Feingold KR, Resnick HE et al (2005) Diabetes and bone loss at the hip in older black and white adults. J Bone Miner Res 20(4):596–603

    Article  PubMed  Google Scholar 

  15. Strotmeyer ES, Boudreau RM, Marshall LM, Schwartz AV, Bauer DC, Barrett-Connor E et al (2008) Higher bone mineral density loss in older men with diabetes: the Osteoporotic Fractures in Men Study. J Bone Miner Res 23(Suppl 1):S59

  16. Gilbert MP, Pratley RE (2015) The impact of diabetes and diabetes medications on bone health. Endocr Rev 36(2):194–213

    Article  CAS  PubMed  Google Scholar 

  17. Bolland MJ, Grey AB, Ames RW, Horne AM, Gamble GD, Reid IR (2005) Fat mass is an important predictor of parathyroid hormone levels in postmenopausal women. Bone 38(3):317–321

    Article  PubMed  Google Scholar 

  18. Leslie WD, Metge C (2003) Establishing a regional bone density program: lessons from the Manitoba experience. J Clin Densitom 6(3):275–282

    Article  PubMed  Google Scholar 

  19. Leslie WD, Caetano PA, Macwilliam LR, Finlayson GS (2005) Construction and validation of a population-based bone densitometry database. J Clin Densitom 8(1):25–30

    Article  PubMed  Google Scholar 

  20. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP et al (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8(5):468–489

    Article  CAS  PubMed  Google Scholar 

  21. Blanchard JF, Ludwig S, Wajda A, Dean H, Anderson K, Kendall O et al (1996) Incidence and prevalence of diabetes in Manitoba, 1986-1991. Diabetes Care 19(8):807–811

    Article  CAS  PubMed  Google Scholar 

  22. Lix L, Yogendran M, Shaw S, Burchill C, Metge C, Bond R (2008) Population-based data sources for chronic disease surveillance. Chronic Dis Can 29(1):31–38

    CAS  PubMed  Google Scholar 

  23. Lix LM, Azimaee M, Osman BA, Caetano P, Morin S, Metge C et al (2012) Osteoporosis-related fracture case definitions for population-based administrative data. BMC Public Health 12:301

    Article  PubMed  PubMed Central  Google Scholar 

  24. O’Donnell S, Canadian Chronic Disease Surveillance System Osteoporosis Working Group (2013) Use of administrative data for national surveillance of osteoporosis and related fractures in Canada: results from a feasibility study. Arch Osteoporos 8:143

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kozyrskyj AL, Mustard CA (1998) Validation of an electronic, population-based prescription database. Ann Pharmacother 32(11):1152–1157

    Article  CAS  PubMed  Google Scholar 

  26. Hastie TJ, Tibshirani RJ 1990 Generalized additive models. Chapman & Hall/CRC Monographs on Statistics & Applied Probability, Boca Raton

  27. Schwartz AV, Ewing SK, Porzig AM, McCulloch CE, Resnick HE, Hillier TA et al (2013) Diabetes and change in bone mineral density at the hip, calcaneus, spine, and radius in older women. Front Endocrinol (Lausanne) 4:62

    PubMed Central  Google Scholar 

  28. Khalil N, Sutton-Tyrrell K, Strotmeyer ES, Greendale GA, Vuga M, Selzer F et al (2011) Menopausal bone changes and incident fractures in diabetic women: a cohort study. Osteoporos Int 22(5):1367–1376

    Article  CAS  PubMed  Google Scholar 

  29. Keegan TH, Schwartz AV, Bauer DC, Sellmeyer DE, Kelsey JL (2004) Fracture intervention t. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care 27(7):1547–1553

    Article  CAS  PubMed  Google Scholar 

  30. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM (1995) Bone loss and bone turnover in diabetes. Diabetes 44(7):775–782

    Article  CAS  PubMed  Google Scholar 

  31. Hygum K, Starup-Linde J, Harslof T, Vestergaard P, Langdahl BL (2017) Diabetes mellitus, a state of low bone turnover—a systematic review and meta-analysis. Eur J Endocrinol 176(3):R137–RR57

    Article  CAS  PubMed  Google Scholar 

  32. Garcia-Martin A, Rozas-Moreno P, Reyes-Garcia R, Morales-Santana S, Garcia-Fontana B, Garcia-Salcedo JA et al (2012) Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 97(1):234–241

    Article  CAS  PubMed  Google Scholar 

  33. Lloyd JT, Alley DE, Hochberg MC, Waldstein SR, Harris TB, Kritchevsky SB et al (2016) Changes in bone mineral density over time by body mass index in the health ABC study. Osteoporos Int 27(6):2109–2116

    Article  CAS  PubMed  Google Scholar 

  34. Greendale GA, Sowers M, Han W, Huang MH, Finkelstein JS, Crandall CJ et al (2012) Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the Study of Women’s Health Across the Nation (SWAN). J Bone Miner Res 27(1):111–118

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jones G, Nguyen T, Sambrook PN, Kelly PJ, Eisman JA (1995) A longitudinal study of the effect of spinal degenerative disease on bone density in the elderly. J Rheumatol 22(5):932–936

    CAS  PubMed  Google Scholar 

  36. Yu EW, Bouxsein ML, Roy AE, Baldwin C, Cange A, Neer RM et al (2014) Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res 29(3):542–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Binkley N, Krueger D, Vallarta-Ast N (2003) An overlying fat panniculus affects femur bone mass measurement. J Clin Densitom 6(3):199–204

    Article  PubMed  Google Scholar 

  38. Berger C, Langsetmo L, Joseph L, Hanley DA, Davison KS, Josse R et al (2008) Change in bone mineral density as a function of age in women and men and association with the use of antiresorptive agents. CMAJ 178(13):1660–1668

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This article has been reviewed and approved by the members of the Manitoba Bone Density Program Committee. The authors acknowledge the Manitoba Centre for Health Policy for the use of data contained in the Manitoba Population Research Data Repository (HIPC File No. 2011/2012-31). The results and conclusions are those of the authors and no official endorsement by the Manitoba Centre for Health Policy, Manitoba Health, or other data providers is intended or should be inferred. The data used in this study are from the Manitoba Population Research Data Repository housed at the Manitoba Centre for Health Policy, University of Manitoba, and were derived from data provided by Manitoba Health.

Funding

No funding support was received for this research project. SNM is chercheur-clinicienne boursier des Fonds de Recherche du Québec en Santé. LML is supported by Manitoba Health Research Chair. SRM holds the Endowed Chair in Patient Health Management supported by the Faculties of Medicine and Dentistry and Pharmacy and Pharmaceutical Sciences at the University of Alberta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Leslie.

Ethics declarations

Conflicts of interest

Suzanne Morin: Consultant to: Amgen; Research Grants: Amgen, Merck.

William Leslie, Sumit Majumdar, Lisa Lix: None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leslie, W.D., Morin, S.N., Majumdar, S.R. et al. Effects of obesity and diabetes on rate of bone density loss. Osteoporos Int 29, 61–67 (2018). https://doi.org/10.1007/s00198-017-4223-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-017-4223-9

Keywords

Navigation