Skip to main content
Log in

Comparative efficacy of bisphosphonates in short-term fracture prevention for primary osteoporosis: a systematic review with network meta-analyses

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Our network meta-analyses compared the efficacy of different bisphosphonates preventing fractures for primary osteoporosis. By including 36 studies, we found that zoledronic acid seemed the most effective in preventing vertebral fracture, nonvertebral fracture, and any fracture, and alendronate or zoledronic acid seemed the most effective in preventing hip fracture.

Introduction

This study was conducted in order to analyze the available evidence on the efficacy of bisphosphonates for preventing fractures.

Methods

We considered randomized trials comparing any bisphosphonate with other bisphosphonate or placebo. We searched Cochrane Library, Embase, and PubMed and manually searched reference list of relevant articles. Pairwise and network meta-analyses were performed. The primary outcome is vertebral fracture. Secondary outcomes include nonvertebral fracture, hip fracture, wrist fracture, and any fracture.

Results

Thirty-six studies were included. Significant difference was found between bisphosphonates for vertebral fracture and nonvertebral fracture (P < 0.0001 and P = 0.04, respectively). Compared with placebo, alendronate, clodronate, ibandronate, minodronate, pamidronate, risedronate, and zoledronic acid significantly prevented vertebral fracture. Zoledronic acid significantly reduced the risk of vertebral fracture, compared with alendronate, clodronate, etidronate, ibandronate, risedronate, and tiludronate (0.65 (0.46, 0.91), 0.53 (0.33, 0.86), 0.45 (0.27, 0.74), 0.52 (0.36, 0.75), 0.59 (0.42, 0.83), and 0.31 (0.21, 0.48), respectively). Compared with etidronate, clodronate and zoledronic acid significantly prevented nonvertebral fracture. Compared with alendronate, zoledronic acid significantly prevented any fracture. The possibility rankings showed that zoledronic ranked first in preventing vertebral fracture, hip fracture, and any fracture, and pamidronate ranked first in preventing nonvertebral fracture and wrist fracture. In the sensitivity analyses, zoledronic acid ranked first in preventing nonvertebral fracture, and alendronate ranked first in preventing hip fracture and wrist fracture.

Conclusion

Zoledronic acid seemed the most effective in preventing vertebral fracture, nonvertebral fracture, and any fracture, and alendronate or zoledronic acid seemed the most effective in preventing hip fracture. Uncertainty still remains and future studies are needed to accurately evaluate the comparative efficacy of bisphosphonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alldredge BK, Koda-Kimble MA, Young LY, Wayne AK, Guglielmo BJ (2009) Applied therapeutics: the clinical use of drugs. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 101–3

    Google Scholar 

  2. Das S, Crockett JC (2013) Osteoporosis—a current view of pharmacological prevention and treatment. Drug Des Devel Ther 7:435–48

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wright NC, Looker A, Saag K, Curtis JR, Dalzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass based on bone mineral density at the femoral neck or lumbar spine in the United States. J Bone Miner Res. doi:10.1002/jbmr.2269

    PubMed  PubMed Central  Google Scholar 

  4. Liu Z-H (2006) Bone mineral and clinical application. Science and Technology of China Press, Beijing, In Chinese

    Google Scholar 

  5. Johnell O, Kanis JA (2006) An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int 17(12):1726–33

    Article  CAS  PubMed  Google Scholar 

  6. Kammerlander C, Zegg M, Schmid R, Gosch M, Luger TJ, Blauth M (2014) Fragility fractures requiring special consideration: vertebral fractures. Clin Geriatr Med 30(2):361–72

    Article  PubMed  Google Scholar 

  7. McClung M, Harris ST, Miller PD et al (2013) Bisphosphonate therapy for osteoporosis: benefits, risks, and drug holiday. Am J Med 126(1):13–20

    Article  CAS  PubMed  Google Scholar 

  8. Duque G (2013) Osteoporosis in older persons: current pharmacotherapy and future directions. Expert Opin Pharmacother 14(14):1949–58

    Article  CAS  PubMed  Google Scholar 

  9. Tanishima S, Morio Y (2013) A review of minodronic acid hydrate for the treatment of osteoporosis. Clin Interv Aging 8:185–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jansen JP, Bergman GJ, Huels J, Olson M (2009) Prevention of vertebral fractures in osteoporosis: mixed treatment comparison of bisphosphonate therapies. Curr Med Res Opin 25(8):1861–8

    Article  CAS  PubMed  Google Scholar 

  11. Jansen JP, Bergman GJ, Huels J, Olson M (2011) The efficacy of bisphosphonates in the prevention of vertebral, hip, and nonvertebral-nonhip fractures in osteoporosis: a network meta-analysis. Semin Arthritis Rheum 40(4):275–84, e1-2

    Article  CAS  PubMed  Google Scholar 

  12. Migliore A, Broccoli S, Massafra U, Cassol M, Frediani B (2013) Ranking antireabsorptive agents to prevent vertebral fractures in postmenopausal osteoporosis by mixed treatment comparison meta-analysis. Eur Rev Med Pharmacol Sci 17(5):658–67

    CAS  PubMed  Google Scholar 

  13. Higgins JPT, Green S (ed) Cochrane handbook for systematic reviews of interventions, version 5.1.0. The Cochrane Collaboration. 2011; http://www.cochrane-handbook.org/. Accessed 27 March 2015

  14. Oei L, Rivadeneira F, Ly F et al (2013) Review of radiological scoring methods of osteoporotic vertebral fractures for clinical and research settings. Eur Radiol 23(2):476–486

    Article  PubMed  Google Scholar 

  15. White IR, Barrett JK, Jackson D, Higgins JPT (2012) Consistency and inconsistency in network meta-analysis: model estimation using multivariate meta-regression. Res Syn Meth 3:111–125

    Article  Google Scholar 

  16. Higgins JPT, Jackson D, Barrett JK, Lu G, Ades AE et al (2012) Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Syn Meth 3:98–110

    Article  CAS  Google Scholar 

  17. White IR (2011) Multivariate random-effects meta-regression: updates to mvmeta. Stata J 11:255–270

    Google Scholar 

  18. Chaimani A, Higgins JPT, Mavridis D, Spyridonos P, Salanti G (2013) Graphical tools for network meta-analysis in STATA. PLoS ONE 8(10):e76654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Turner RM, Davey J, Clarke MJ, Thompson SG, Higgins JP (2012) Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews. Int J Epidemiol 41(3):818–27

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bucher HC, Guyatt GH, Griffith LE, Walter SD (1997) The results of direct and indirect treatment comparisons in meta-analysis of randomized controlled trials. J Clin Epidemiol 50(6):683–91

    Article  CAS  PubMed  Google Scholar 

  21. Salanti G, Marinho V, Higgins JP (2009) A case study of multiple treatments meta-analysis demonstrates that covariates should be considered. J Clin Epidemiol 62(8):857–64

    Article  PubMed  Google Scholar 

  22. Higgins JP, Jackson D, Barrett JK, Lu G, Ades AE, White IR (2012) Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Syn Meth 3(2):98–110. doi:10.1002/jrsm.1044

    Article  CAS  Google Scholar 

  23. Harris ST, Blumentals WA, Miller PD (2008) Ibandronate and the risk of non-vertebral and clinical fractures in women with postmenopausal osteoporosis: results of a meta-analysis of phase III studies. Curr Med Res 24(1):237–45

    Article  CAS  Google Scholar 

  24. Bell NH, Bilezikian JP, Bone HG 3rd, Kaur A, Maragoto A, Santora AC (2002) Alendronate increases bone mass and reduces bone markers in postmenopausal African-American women. J Clin Endocrinol Metab 87(6):2792–7

    Article  CAS  PubMed  Google Scholar 

  25. Black DM, Cummings SR, Karpf DB et al (1996) Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 348(9041):1535–41

    Article  CAS  PubMed  Google Scholar 

  26. Bone HG, Downs RW Jr, Tucci JR et al (1997) Dose-response relationships for alendronate treatment in osteoporotic elderly women. Alendronate Elderly Osteoporosis Study Centers. J Clin Endocrinol Metab 82(1):265–74

    CAS  PubMed  Google Scholar 

  27. Bone HG, Greenspan SL, Mckeever C et al (1999) Alendronate and estrogen effects in postmenopausal women with low bone mineral density. J Clin Endocrinol Metab 85(2):720–6

    Google Scholar 

  28. Bonnick S, Saag KG, Kiel DP et al (2006) Comparison of weekly treatment of postmenopausal osteoporosis with alendronate versus risedronate over two years. J Clin Endocrinol Metab 91(7):2631–7

    Article  CAS  PubMed  Google Scholar 

  29. Cummings SR, Black DM, Thompson DE et al (1998) Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 280(24):2077–82

    Article  CAS  PubMed  Google Scholar 

  30. Greenspan SL, Parker RA, Ferguson L, Rosen HN, Maitland-Ramsey L, Karpf DB (1998) Early changes in biochemical markers of bone turnover predict the long-term response to alendronate therapy in representative elderly women: a randomized clinical trial. J Bone Miner Res 13(9):1431–1438

    Article  CAS  PubMed  Google Scholar 

  31. Greenspan SL, Schneider DL, McClung MR et al (2002) Alendronate improves bone mineral density in elderly women with osteoporosis residing in long-term care facilities. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 136(10):742–6

    Article  CAS  PubMed  Google Scholar 

  32. Liberman UA, Weiss SR, Broll J et al (1995) Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The Alendronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 333(22):1437–43

    Article  CAS  PubMed  Google Scholar 

  33. Orwoll E, Ettinger M, Weiss S et al (2000) Alendronate for the treatment of osteoporosis in men. N Engl J Med 343(9):604–10

    Article  CAS  PubMed  Google Scholar 

  34. Orwoll ES, Binkley NC, Lewiecki EM, Gruntmanis U, Fries MA, Dasic G (2010) Efficacy and safety of monthly ibandronate in men with low bone density. Bone 46(4):970–6

    Article  CAS  PubMed  Google Scholar 

  35. Reid DM, Hosking D, Kendler D et al (2008) A comparison of the effect of alendronate and risedronate on bone mineral density in postmenopausal women with osteoporosis: 24-month results from FACTS-International. Int J Clin Pract 62(4):575–584

    Article  CAS  PubMed  Google Scholar 

  36. McCloskey E, Selby P, Davies M et al (2004) Clodronate reduces vertebral fracture risk in women with postmenopausal or secondary osteoporosis: results of a double-blind, placebo-controlled 3-year study. J Bone Miner Res 19(5):728–36

    Article  CAS  PubMed  Google Scholar 

  37. McCloskey EV, Beneton M, Charlesworth D et al (2007) Clodronate reduces the incidence of fractures in community-dwelling elderly women unselected for osteoporosis: results of a double-blind, placebo-controlled randomized study. J Bone Miner Res 22(1):135–41

    Article  CAS  PubMed  Google Scholar 

  38. Harris ST, Watts NB, Jackson RD et al (1993) Four-year study of intermittent cyclic etidronate treatment of postmenopausal osteoporosis: three years of blinded therapy followed by one year of open therapy. Am J Med 95(6):557–67

    Article  CAS  PubMed  Google Scholar 

  39. Kushida K, Fukunaga M, Kishimoto H et al (2004) A comparison of incidences of vertebral fracture in Japanese patients with involutional osteoporosis treated with risedronate and etidronate: a randomized, double-masked trial. J Bone Miner Metab 22(5):469–78

    CAS  PubMed  Google Scholar 

  40. Storm T, Thamsborg G, Steiniche T, Genant HK, Sorensen OH (1990) Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med 322(18):1265–71

    Article  CAS  PubMed  Google Scholar 

  41. Chesnut ICH, Skag A, Christiansen C et al (2004) Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 19(8):1241–9

    Article  CAS  PubMed  Google Scholar 

  42. Nakamura T, Nakano T, Ito M et al (2013) Clinical efficacy on fracture risk and safety of 0.5 mg or 1 mg/month intravenous ibandronate versus 2.5 mg/day oral risedronate in patients with primary osteoporosis. Calcif Tissue Int 93(2):137–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Recker R, Stakkestad JA, Chesnut CH 3rd et al (2004) Insufficiently dosed intravenous ibandronate injections are associated with suboptimal antifracture efficacy in postmenopausal osteoporosis. Bone 34(5):890–9

    Article  CAS  PubMed  Google Scholar 

  44. Matsumoto T, Hagino H, Shiraki M et al (2009) Effect of daily oral minodronate on vertebral fractures in Japanese postmenopausal women with established osteoporosis: a randomized placebo-controlled double-blind study. Osteoporos Int 20(8):1429–37

    Article  CAS  PubMed  Google Scholar 

  45. Brumsen C, Papapoulos SE, Lips P et al (2002) Daily oral pamidronate in women and men with osteoporosis: a 3-year randomized placebo-controlled clinical trial with a 2-year open extension. J Bone Miner Res 17(6):1057–64

    Article  CAS  PubMed  Google Scholar 

  46. Reid IR, Wattie DJ, Evans MC, Gamble GD, Stapleton JP, Cornish J (1994) Continuous therapy with pamidronate, a potent bisphosphonate, in postmenopausal osteoporosis. J Clin Endocrinol Metab 79(6):1595–9

    CAS  PubMed  Google Scholar 

  47. Boonen S, Orwoll ES, Wenderoth D, Stoner KJ, Eusebio R, Delmas PD (2009) Once-weekly risedronate in men with osteoporosis: results of a 2-year, placebo-controlled, double-blind, multicenter study. J Bone Miner Res 24(4):719–25

    Article  CAS  PubMed  Google Scholar 

  48. Clemmesen B, Ravn P, Zegels B, Taquet AN, Christiansen C, Reginster JY (1997) A 2-year phase II study with 1-year of follow-up of risedronate (NE-58095) in postmenopausal osteoporosis. Osteoporos Int 7(5):488–95

    Article  CAS  PubMed  Google Scholar 

  49. Fogelman I, Ribot C, Smith R, Ethgen D, Sod E, Reginster JY (2000) Risedronate reverses bone loss in postmenopausal women with low bone mass: results from a multinational, double-blind, placebo-controlled trial. BMD-MN Study Group. J Clin Endocrinol Metab 85(5):1895–900

    CAS  PubMed  Google Scholar 

  50. Harris ST, Watts NB, Genant HK et al (1999) Effects of risedronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. JAMA 282(14):1344–52

    Article  CAS  PubMed  Google Scholar 

  51. McClung MR, Geusens P, Miller PD et al (2001) Effect of risedronate on the risk of hip fracture in elderly women. Hip Intervention Program Study Group. N Engl J Med 344(5):333–40

    Article  CAS  PubMed  Google Scholar 

  52. Reginster J, Minne HW, Sorensen OH et al (2000) Randomized trial of the effects of risedronate on vertebral fractures in women with established postmenopausal osteoporosis. Vertebral Efficacy with Risedronate Therapy (VERT) Study Group. Osteoporos Int 11(1):83–91

    Article  CAS  PubMed  Google Scholar 

  53. Reginser JY, Christiansen C, Roux C et al (2001) Intermittent cyclic tiludronate in the treatment of osteoporosis. Osteoporos Int 12:169–177

    Article  Google Scholar 

  54. Bai H, Jing D, Guo A, Yin S (2013) Randomized controlled trial of zoledronic acid for treatment of osteoporosis in women. J Int Med Res 41(3):697–704

    Article  CAS  PubMed  Google Scholar 

  55. Black DM, Delmas PD, Eastell R et al (2007) Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med 356(18):1809–22

    Article  CAS  PubMed  Google Scholar 

  56. Boonen S, Reginster JY, Kaufman JM et al (2012) Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med 367(18):1714–23

    Article  CAS  PubMed  Google Scholar 

  57. Grey A, Bolland MJ, Wattie D, Horne A, Gamble G, Reid IR (2009) The antiresorptive effects of a single dose of zoledronate persist for two years: a randomized, placebo-controlled trial in osteopenic postmenopausal women. J Clin Endocrinol Metab 94(2):538–44

    Article  CAS  PubMed  Google Scholar 

  58. Lyles KW, Colon-Emeric CS, Magaziner JS et al (2007) Zoledronic acid and clinical fractures and mortality after hip fracture. N Engl J Med 357(18):1799–809

    Article  CAS  PubMed  Google Scholar 

  59. Chao M, Hua Q, Yingfeng Z, Guang W, Shufeng S, Yuzhen D et al (2013) Study on the role of zoledronic acid in treatment of postmenopausal osteoporosis. Pak J Med Sci 29(6):1381–1384. doi:10.12669/pjms.296.3677

    PubMed  PubMed Central  Google Scholar 

  60. Cosman F, de Beur SJ, LeBoff MS et al (2014) Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rizzoli R (2011) Bisphosphonates for post-menopausal osteoporosis: are they all the same? Q J Med 104:281–300

    Article  CAS  Google Scholar 

  62. Nuti R (2014) Updates on mechanism of action and clinical efficacy of risedronate in osteoporosis. Clin Case Miner Bone Metab 11(3):208–214

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zhai.

Ethics declarations

Conflicts of interest

None.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

PRISMA checklist (PDF 139 kb)

Online Resource 2

Searching strategy (PDF 18 kb)

Online Resource 3

Network evidences (PDF 58 kb)

Online Resource 4

Summary results for the comparison between bisphosphonates (PDF 14 kb)

Online Resource 5

Subgroup analysis for pairwise meta-analysis of bisphosphonates versus placebo (PDF 254 kb)

Online Resource 6

Cumulative probability of ranking for bisphosphonates (PDF 176 kb)

Online Resource 7

Network funnel plot (PDF 332 kb)

Online Resource 8

Sensitivity analyses (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Ma, X., Wang, T. et al. Comparative efficacy of bisphosphonates in short-term fracture prevention for primary osteoporosis: a systematic review with network meta-analyses. Osteoporos Int 27, 3289–3300 (2016). https://doi.org/10.1007/s00198-016-3654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-016-3654-z

Keywords

Navigation