Skip to main content

Advertisement

Log in

Evidence of degraded BMD and geometry at the proximal femora in male patients with alcoholic liver cirrhosis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

We examined the association of alcoholic cirrhosis in 33 patients with areal bone mineral density (BMD) and the assessed bone geometric strength of their proximal femora. Lower areal BMD, cross-sectional area and section modulus, thinner cortex, and higher buckling ratio suggest that the alcoholic liver cirrhosis is associated with lower measures of bone strength.

Introduction

Hepatic bone disease is an important complication of chronic liver disease and is associated with significant morbidity through fractures resulting in pain, deformity, and immobility. In this study, we examined the association of alcoholic cirrhosis and liver insufficiency stage with areal bone mineral density (aBMD) and additionally employed hip structure analysis (HSA) as an advanced method to assess bone geometric strength of the proximal femur in men with alcoholic liver cirrhosis.

Methods

The study included 33 male patients with alcoholic liver cirrhosis and a control group of 36 healthy patients. Laboratory testing included the following biochemical markers of bone turnover: serum levels of osteocalcin and C-telopeptide of type 1 collagen. Areal BMD was measured by dual x-ray absorptiometry on the proximal femora. Structural parameters were then derived from these scans using hip structure analysis software.

Results

After adjusting for age, body height, and weight, we found lower cross-sectional area (p = 0.005) and section modulus (p = 0.005), thinner cortex (p = 0.012), and higher buckling ratio (p = 0.043) in the neck region among patients with cirrhosis. The findings suggest that alcoholic liver cirrhosis is associated with lower measures of bone strength. These findings were consistent with decreased osteocalcin values and increased C-telopeptide of type 1 collagen in patients with cirrhosis, indicating reduction in bone formation and increased bone resorption.

Conclusion

Our results emphasize that HSA-derived structural indices of proximal femoral structure may be an important index of greater fragility in patients with alcoholic cirrhosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Blachier M, Leleu H, Peck-Radosavljevic M, Valla DC, Roudot-Thoraval F (2013) The burden of liver disease in Europe: a review of available epidemiological data. J Hepatol 58(3):593–608

    Article  PubMed  Google Scholar 

  2. Rehm J, Taylor B, Mohapatra S, Irving H, Baliunas D, Patra J, Roerecke M (2010) Alcohol as a risk factor for liver cirrhosis: a systematic review and meta-analysis. Drug Alcohol Rev 29(4):437–45

    Article  PubMed  Google Scholar 

  3. Gansauge F, Gansauge S, Eh M et al (2001) Distributional and functional alterations of immunocompetent peripheral blood lymphocytes in patients with chronic pancreatitis. Ann Surg 233(3):365–70

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Saito H, Ishii H (2004) Recent understanding of immunological aspects in alcoholic hepatitis. Hepatol Res 30(4):193–198

    Article  CAS  PubMed  Google Scholar 

  5. Bang UC, Benfield T, Bendtsen F, Hyldstrup L, Beck Jensen JE (2014) The risk of fractures among patients with cirrhosis or chronic pancreatitis. Clin Gastroenterol Hepatol 12(2):320–6

    Article  PubMed  Google Scholar 

  6. Ferrari-Lacraz S, Ferrari S (2011) Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos Int 22(2):435–46

    Article  CAS  PubMed  Google Scholar 

  7. Takayanagi H, Ogasawara K, Hida S, Chiba T, Murata S, Sato K, Takaoka A, Yokochi T, Oda H, Tanaka K, Nakamura K, Taniguchi T (2000) T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 408:600–605

    Article  CAS  PubMed  Google Scholar 

  8. Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R (2000) Interleukin-7 stimulates osteoclast formation by up-regulating the T-cell production of soluble osteoclastogenic cytokines. Blood 96:1873–1878

    CAS  PubMed  Google Scholar 

  9. Li Y, Toraldo G, Li A, Yang X, Zhang H, Qian WP, Weitzmann MN (2007) B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood 109:3839–3848

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Raisz LG (2005) Pathogenesis of osteoporosis: concept, conflict, and prospects. J Clin Invest 115:3318–3325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Mounach A, Ouzzif Z, Wariaghli G, Achemlal L, Benbaghdadi I, Aouragh A, Bezza A, El Maghraoui A (2008) Primary biliary cirrhosis and osteoporosis: a case-control study. J Bone Miner Metab 26:379–384

    Article  PubMed  Google Scholar 

  12. Lindor KD, Janes CH, Crippin JS, Jorgensen RA, Dickson ER (1995) Bone disease in primary biliary cirrhosis: does ursodeoxycholic acid make a difference? Hepatology 21:389–392

    CAS  PubMed  Google Scholar 

  13. Gallego-Rojo FJ, Gonzalez-Calvin JL, Munoz-Torres M et al (1998) Bone mineral density, serum insulin-like growth factor I, and bone turnover markers in viral cirrhosis. Hepatology 28:695–699

    Article  CAS  PubMed  Google Scholar 

  14. George J, Ganesh HK, Acharya S et al (2009) Bone mineral density and disorders of mineral metabolism in chronic liver disease. W J Gastroenterol 15:3516–3522

    Article  CAS  Google Scholar 

  15. Malik P, Gasser RW, Kemmler G, Moncayo R, Finkenstedt G, Kurz M, Fleischhacker WW (2009) Low bone mineral density and impaired bone metabolism in young alcoholic patients without liver cirrhosis: a cross-sectional study. Alcohol Clin Exp Res 33:375–381

    Article  CAS  PubMed  Google Scholar 

  16. Mahmoudi A, Sellier N, Reboul-Marty J et al (2011) Bone mineral density assessed by dual-energy X-ray absorptiometry in patients with viral or alcoholic compensated cirrhosis: a prospective study. Clin Res Hepatol Gastroenterol 35:731–737

    Article  CAS  PubMed  Google Scholar 

  17. Diamond T, Stiel D, Posen S (1989) Osteoporosis in hemochromatosis: iron excess, gonadal deficiency, or other factors? Ann Intern Med 110:430–436

    Article  CAS  PubMed  Google Scholar 

  18. Chen CC, Wang SS, Jeng FS, Lee SD (1996) Metabolic bone disease of liver cirrhosis: is it parallel to the clinical severity of cirrhosis? J Gastroenterol Hepatol 11:417–421

    Article  CAS  PubMed  Google Scholar 

  19. Angulo P, Therneau TM, Jorgensen A et al (1998) Bone disease in patients with primary sclerosing cholangitis: prevalence, severity and prediction of progression. J Hepatol 29(5):729–35

    Article  CAS  PubMed  Google Scholar 

  20. Gonzalez-Calvin JL, Mundi JL, Casado-Caballero FJ et al (2009) Bone mineral density and serum levels of soluble tumor necrosis factors, estradiol, and osteoprotegerin in postmenopausal women with cirrhosis after viral hepatitis. J Clin Endocrinol Metab 94(12):4844–50

    Article  CAS  PubMed  Google Scholar 

  21. Ormarsdottir S, Ljunggren O, Mallmin H et al (2002) Increased rate of bone loss at the femoral neck in patients with chronic liver disease. Eur J Gastroenterol Hepatol 14(1):43–8

    Article  PubMed  Google Scholar 

  22. Campbell MS, Lichtenstein GR, Rhim AD et al (2005) Severity of liver disease does not predict osteopenia or low bone mineral density in primary sclerosing cholangitis. Liver Int 25(2):311–6

    Article  PubMed  Google Scholar 

  23. Mikosch (2014) Pierre-Alain Clavien, James Trotter, Beat Mϋllhaupt. Medical care of the liver transplant patients. 4th edition Blackwell Publishing 2012

  24. Guañabens N, Monegal A, Muxi A, Martinez-Ferrer A, Reyes R, Caballería J, Del Río L, Peris P, Pons F, Parés A (2012) Patients with cirrhosis and ascites have false values of bone density: implications for the diagnosis of osteoporosis. Osteoporos Int 23(4):1481–7

    Article  PubMed  Google Scholar 

  25. Child CG, Turcotte JG (1964) Surgery and portal hypertension. In: Child CG (ed) The liver and portal hypertension. Saunders, Philadelphia, pp 50–64

    Google Scholar 

  26. Beck TJ, Ruff CB, Warden KE, Scott WW, Rao GU (1990) Predicting femoral neck strength from bone mineral data—a structural approach. Invest Radiol 25:6–18

    Article  CAS  PubMed  Google Scholar 

  27. Beck TJ, Looker AC, Ruff CB, Sievanen H, Wahner HW (2000) Structural trends in the aging femoral neck and proximal shaft: analysis of the Third National Health and Nutrition Examination Survey dual-energy X-ray absorptiometry data. J Bone Miner Res 15:2297–2304

    Article  CAS  PubMed  Google Scholar 

  28. Erler K (1998) Elecsys® immunoassay systems using electrochemiluminescence detection. Wien Klin Wochenschr 110:5–10

    CAS  PubMed  Google Scholar 

  29. Yates LB, Karasik D, Beck TJ, Cupples LA, Kiel DP (2007) Hip structural geometry in old and old-old age: similarities and differences between men and women. Bone 41:722–732

    Article  PubMed Central  PubMed  Google Scholar 

  30. Looker AC, Beck TJ, Orwoll ES (2001) Does body size account for gender differences in femur bone density and geometry? J Bone Miner Res 16:1291–1299

    Article  CAS  PubMed  Google Scholar 

  31. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. B M J 312:1254–1259

    Article  CAS  Google Scholar 

  32. Genant HK, Cooper C, Poor G, Reid I, Ehrlich G et al (1999) Interim report and recommendations of the World Health Organization task-force for osteoporosis. Osteoporos Int 10:259–264

    Article  CAS  PubMed  Google Scholar 

  33. Cummings SR (1985) Are patients with hip fractures more osteoporotic? Review of the evidence. Am J Med 78:487–494

    Article  CAS  PubMed  Google Scholar 

  34. Stone KL, Seeley DG, Lui LY et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res 18:1947–1954

    Article  PubMed  Google Scholar 

  35. De Laet CE, van Hout BA, Burger H, Hofman A, Pols HA (1997) Bone density and risk of hip fracture in men and women: cross sectional analysis. BMJ 315:221–225

    Article  PubMed Central  PubMed  Google Scholar 

  36. Crabtree NJ, Kroger H, Martin A et al (2002) Improving risk assessment: hip geometry, bone mineral distribution and bone strength in hip fracture cases and controls. The EPOS study, European Prospective Osteoporosis Study. Osteoporos Int 13:48–54

    Article  CAS  PubMed  Google Scholar 

  37. Maser RE, Kolm P, Modlesky CM, Beck TJ, Lenhard MJ (2012) Hip strength in adults with type 1 diabetes is associated with age at onset of diabetes. J Clin Densitom 15:78–85

    Article  PubMed  Google Scholar 

  38. Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, Cummings SR (2008) Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res 23:1892–1904

    Article  PubMed Central  PubMed  Google Scholar 

  39. LaCroix A, Beck TJ, Cauley J, Lewis C, Bassford T, Jackson R, Wu G, Chen Z (2010) Hip structural geometry and incidence of hip fracture in postmenopausal women: what does it add to conventional bone mineral density? Osteoporos Int 21:919–929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hegedus D, Ferencz V, Lakatos PL, Meszaros S, Lakatos P, Horvath C, Szalay F (2002) Decreased bone density, elevated serum osteoprotegerin, and beta-cross-laps in Wilson disease. J Bone Miner Res 17:1961–1967

    Article  CAS  PubMed  Google Scholar 

  41. Rico H, Cabranes JA, Cabello J et al (1987) Low serum osteocalcin in acute alcohol intoxication: a direct toxic effect of alcohol on osteoblasts. Bone Mineral 2:221–225

    CAS  PubMed  Google Scholar 

  42. Malik P et al (2012) Markers of bone resorption and formation during abstinence in male alcoholic patients. Alcohol Clin Exp Res 36:2059–63

    Article  PubMed  Google Scholar 

  43. Alvisa-Negrín J, González-Reimers E, Santolaria-Fernández F, García-Valdecasas-Campelo E, Valls MR, Pelazas-González R, Durán-Castellón MC, de Los Angeles Gómez-Rodríguez M (2009) Osteopenia in alcoholics: effect of alcohol abstinence. Alcohol Alcohol 44(5):468–75

    Article  PubMed  Google Scholar 

  44. Kim MJ, Shim MS, Kim MK, Lee Y, Shin YG, Chung CH, Kwon SO (2003) Effect of chronic alcohol ingestion on bone mineral density in males without liver cirrhosis. Korean J Intern Med 18(3):174–180

    CAS  PubMed  Google Scholar 

  45. Vasikaran S, Cooper C, Eastell R, Griesmacher A, Morris HA, Trenti T, Kanis JA (2011) International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 49(8):1271–4

    Article  CAS  PubMed  Google Scholar 

  46. Maran A, Zhang M, Speelsberg TC, Turner RT (2001) The dose−response effects of ethanol on the human fetal osteoblastic cell line. J Bone Miner Res 16:270–276

    Article  CAS  PubMed  Google Scholar 

  47. Bikle DD, Genant HK, Cann C, Recker RR, Halloran BP, Strewler GJ (1985) Bone disease in alcohol abuse. Ann Intern Med 103:42–48

    Article  CAS  PubMed  Google Scholar 

  48. Collier J (2007) Bone disorders in chronic liver disease. Hepatology 46:1271–1278

    Article  CAS  PubMed  Google Scholar 

  49. Khoruts A, Stahnke L, McClain CJ, Logan G, Allen JI (1991) Circulating tumor necrosis factor, interleukin-1 and interleukin-6 concentrations in chronic alcoholic patients. Hepatology 13:267–276

    Article  CAS  PubMed  Google Scholar 

  50. Carey J, Balan V, Kremers W, Hay E (2003) Osteopenia and osteoporosis in patients with end stage liver disease caused by hepatitis C and alcoholic liver disease: not just a cholestatic problem. Liver Transplant 9:1163–1173

    Article  Google Scholar 

  51. Djonic D, Milovanovic P, Nikolic S, Ivovic M, Marinkovic J, Beck T, Djuric M (2011) Inter-sex differences in structural properties of aging femora: implications on differential bone fragility: a cadaver study. J Bone Miner Metab 29:449–457

    Article  PubMed  Google Scholar 

  52. Djonic D, Milovanovic P, Marshall RP, Hahn M, Nikolic S, Zivkovic V, Amling M, Djuric M (2012) Micro-structural basis for particular vulnerability of the superolateral neck trabecular bone in the postmenopausal women with hip fractures. Bone 50:63–68

    Article  PubMed  Google Scholar 

  53. Baudoin C, Fardellone P, Sebert JL (1993) Effect of sex and age on the ratio of cervical to trochanteric hip fracture. A metaanalysis of 16 reports on 36 451 cases. Acta Orthop Scand 64:647–653

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was conducted as a part of the project No. 175036 and No. 45005, financially supported by the Ministry of Science and Technology of the Republic of Serbia.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Djuric.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Culafić, D., Djonic, D., Culafic-Vojinovic, V. et al. Evidence of degraded BMD and geometry at the proximal femora in male patients with alcoholic liver cirrhosis. Osteoporos Int 26, 253–259 (2015). https://doi.org/10.1007/s00198-014-2849-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2849-4

Keywords

Navigation