Skip to main content
Log in

A brilliant breakthrough in OI type V

  • Review
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Interferon-induced transmembrane protein 5 or bone-restricted ifitm-like gene (Bril) was first identified as a bone gene in 2008, although no in vivo role was identified at that time. A role in human bone has now been demonstrated with a number of recent studies identifying a single point mutation in Bril as the causative mutation in osteogenesis imperfecta type V (OI type V). Such a discovery suggests a key role for Bril in skeletal regulation, and the completely novel nature of the gene raises the possibility of a new regulatory pathway in bone. Furthermore, the phenotype of OI type V has unique and quite divergent features compared with other forms of OI involving defects in collagen biology. Currently it appears that the underlying genetic defect in OI type V may be unrelated to collagen regulation, which also raises interesting questions about the classification of this form of OI. This review will discuss current knowledge of OI type V, the function of Bril, and the implications of this recent discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Van Dijk FS, Pals G, Van Rijn RR, Nikkels PG, Cobben JM (2010) Classification of osteogenesis imperfecta revisited. European journal of medical genetics 53(1):1–5. doi:10.1016/j.ejmg.2009.10.007

    Article  PubMed  Google Scholar 

  2. Sykes B, Francis MJ, Smith R (1977) Altered relation of two collagen types in osteogenesis imperfecta. N Engl J Med 296(21):1200–1203. doi:10.1056/nejm197705262962104

    Article  CAS  PubMed  Google Scholar 

  3. Trelstad RL, Rubin D, Gross J (1977) Osteogenesis imperfecta congenita: evidence for a generalised molecular disorder of collagen. Lab Invest 36(5):501–508

    CAS  PubMed  Google Scholar 

  4. Chu ML, Williams CJ, Pepe G, Hirsch JL, Prockop DJ, Ramirez F (1983) Internal deletion in a collagen gene in a perinatal lethal form of osteogenesis imperfecta. Nature 304(5921):78–80

    Article  CAS  PubMed  Google Scholar 

  5. Steinmann B, Rao VH, Vogel A, Bruckner P, Gitzelmann R, Byers PH (1984) Cysteine in the triple-helical domain of one allelic product of the alpha 1(I) gene of type I collagen produces a lethal form of osteogenesis imperfecta. J Biol Chem 259(17):11129–11138

    CAS  PubMed  Google Scholar 

  6. Cohn DH, Byers PH, Steinmann B, Gelinas RE (1986) Lethal osteogenesis imperfecta resulting from a single nucleotide change in one human pro alpha 1(I) collagen allele. Proc Natl Acad Sci U S A 83(16):6045–6047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sykes B, Ogilvie D, Wordsworth P, Wallis G, Mathew C, Beighton P, Nicholls A, Pope FM, Thompson E, Tsipouras P et al (1990) Consistent linkage of dominantly inherited osteogenesis imperfecta to the type I collagen loci: COL1A1 and COL1A2. Am J Hum Genet 46(2):293–307

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Dalgleish R (1997) The human type I collagen mutation database. Nucleic Acids Res 25(1):181–187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Dalgleish R (1998) The human collagen mutation database 1998. Nucleic Acids Res 26(1):253–255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, Hyland JC, Korkko J, Prockop DJ, De Paepe A, Coucke P, Symoens S, Glorieux FH, Roughley PJ, Lund AM, Kuurila-Svahn K, Hartikka H, Cohn DH, Krakow D, Mottes M, Schwarze U, Chen D, Yang K, Kuslich C, Troendle J, Dalgleish R, Byers PH (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 28(3):209–221. doi:10.1002/humu.20429

    Article  CAS  PubMed  Google Scholar 

  11. Pihlajaniemi T, Dickson LA, Pope FM, Korhonen VR, Nicholls A, Prockop DJ, Myers JC (1984) Osteogenesis imperfecta: cloning of a pro-alpha 2(I) collagen gene with a frameshift mutation. J Biol Chem 259(21):12941–12944

    CAS  PubMed  Google Scholar 

  12. Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bachinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127(2):291–304. doi:10.1016/j.cell.2006.08.039

    Article  CAS  PubMed  Google Scholar 

  13. Cabral WA, Barnes AM, Adeyemo A, Cushing K, Chitayat D, Porter FD, Panny SR, Gulamali-Majid F, Tishkoff SA, Rebbeck TR, Gueye SM, Bailey-Wilson JE, Brody LC, Rotimi CN, Marini JC (2012) A founder mutation in LEPRE1 carried by 1.5 % of West Africans and 0.4 % of African Americans causes lethal recessive osteogenesis imperfecta. Genetics in medicine: official journal of the American College of Medical Genetics 14(5):543–551. doi:10.1038/gim.2011.44

    Article  CAS  Google Scholar 

  14. van Dijk FS, Nesbitt IM, Zwikstra EH, Nikkels PG, Piersma SR, Fratantoni SA, Jimenez CR, Huizer M, Morsman AC, Cobben JM, van Roij MH, Elting MW, Verbeke JI, Wijnaendts LC, Shaw NJ, Hogler W, McKeown C, Sistermans EA, Dalton A, Meijers-Heijboer H, Pals G (2009) PPIB mutations cause severe osteogenesis imperfecta. Am J Hum Genet 85(4):521–527. doi:10.1016/j.ajhg.2009.09.001

    Article  PubMed Central  PubMed  Google Scholar 

  15. Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S, Pepin MG, Weis MA, Eyre DR, Byers PH (2010) Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet 86(3):389–398. doi:10.1016/j.ajhg.2010.01.034

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Alanay Y, Avaygan H, Camacho N, Utine GE, Boduroglu K, Aktas D, Alikasifoglu M, Tuncbilek E, Orhan D, Bakar FT, Zabel B, Superti-Furga A, Bruckner-Tuderman L, Curry CJ, Pyott S, Byers PH, Eyre DR, Baldridge D, Lee B, Merrill AE, Davis EC, Cohn DH, Akarsu N, Krakow D (2010) Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 86(4):551–559. doi:10.1016/j.ajhg.2010.02.022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Homan EP, Rauch F, Grafe I, Lietman C, Doll JA, Dawson B, Bertin T, Napierala D, Morello R, Gibbs R, White L, Miki R, Cohn DH, Crawford S, Travers R, Glorieux FH, Lee B (2011) Mutations in SERPINF1 cause osteogenesis imperfecta type VI. J Bone Miner Res 26(12):2798–2803. doi:10.1002/jbmr.487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, de Vries P, Wirth B, Schoenau E, Wollnik B, Veltman JA, Hoischen A, Netzer C (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88(3):362–371. doi:10.1016/j.ajhg.2011.01.015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Martínez-Glez V, Valencia M, Caparrós-Martín JA, Aglan M, Temtamy S, Tenorio J, Pulido V, Lindert U, Rohrbach M, Eyre D, Giunta C, Lapunzina P, Ruiz-Perez VL (2012) Identification of a mutation causing deficient BMP1/mTLD proteolytic activity in autosomal recessive osteogenesis imperfecta. Hum Mutat 33(2):343–350. doi:10.1002/humu.21647

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lapunzina P, Aglan M, Temtamy S, Caparros-Martin JA, Valencia M, Leton R, Martinez-Glez V, Elhossini R, Amr K, Vilaboa N, Ruiz-Perez VL (2010) Identification of a frameshift mutation in Osterix in a patient with recessive osteogenesis imperfecta. Am J Hum Genet 87(1):110–114. doi:10.1016/j.ajhg.2010.05.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Keupp K, Beleggia F, Kayserili H, Barnes Aileen M, Steiner M, Semler O, Fischer B, Yigit G, Janda Claudia Y, Becker J, Breer S, Altunoglu U, Grünhagen J, Krawitz P, Hecht J, Schinke T, Makareeva E, Lausch E, Cankaya T, Caparrós-Martín José A, Lapunzina P, Temtamy S, Aglan M, Zabel B, Eysel P, Koerber F, Leikin S, Garcia KC, Netzer C, Schönau E, Ruiz-Perez Victor L, Mundlos S, Amling M, Kornak U, Marini J, Wollnik B (2013) Mutations in WNT1 Cause Different Forms of Bone Fragility. The American Journal of Human Genetics In Press

  22. Laine CM, Joeng KS, Campeau PM, Kiviranta R, Tarkkonen K, Grover M, Lu JT, Pekkinen M, Wessman M, Heino TJ, Nieminen-Pihala V, Aronen M, Laine T, Kröger H, Cole WG, Lehesjoki A-E, Nevarez L, Krakow D, Curry CJR, Cohn DH, Gibbs RA, Lee BH, Mäkitie O (2013) WNT1 Mutations in Early-Onset Osteoporosis and Osteogenesis Imperfecta. N Engl J Med 368 (19):1809–1816. doi:doi:10.1056/NEJMoa1215458

    Google Scholar 

  23. Forlino A, Cabral WA, Barnes AM, Marini JC (2011) New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 7(9):540–557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Cho TJ, Lee KE, Lee SK, Song SJ, Kim KJ, Jeon D, Lee G, Kim HN, Lee HR, Eom HH, Lee ZH, Kim OH, Park WY, Park SS, Ikegawa S, Yoo WJ, Choi IH, Kim JW (2012) A single recurrent mutation in the 5'-UTR of IFITM5 causes osteogenesis imperfecta Type V. Am J Hum Genet 91(2):343–348. doi:10.1016/j.ajhg.2012.06.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Farber C, Reich A, Barnes A, Cabral W, Riddle R, Digirolamo D, Clemens T, Marini J (2012) A Dominant Mutation of IFITM5 in Severe Osteogenesis Imperfecta Implicates an Interaction between Bril and PEDF in Bone. J Bone Miner Res 27 (Suppl 1):#1220

    Google Scholar 

  26. Moffatt P, Gaumond MH, Salois P, Sellin K, Bessette MC, Godin E, de Oliveira PT, Atkins GJ, Nanci A, Thomas G (2008) Bril: a novel bone-specific modulator of mineralization. J Bone Miner Res 23(9):1497–1508. doi:10.1359/jbmr.080412

    Article  CAS  PubMed  Google Scholar 

  27. Glorieux FH, Rauch F, Plotkin H, Ward L, Travers R, Roughley P, Lalic L, Glorieux DF, Fassier F, Bishop NJ (2000) Type V osteogenesis imperfecta: a new form of brittle bone disease. J Bone Miner Res 15(9):1650–1658. doi:10.1359/jbmr.2000.15.9.1650

    Article  CAS  PubMed  Google Scholar 

  28. Rauch F, Moffatt P, Cheung M, Roughley P, Lalic L, Lund AM, Ramirez N, Fahiminiya S, Majewski J, Glorieux FH (2013) Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of the IFITM5 c.-14C > T mutation in all patients. J Med Genet 50(1):21–24. doi:10.1136/jmedgenet-2012-101307

    Article  CAS  PubMed  Google Scholar 

  29. Shapiro JR, Lietman C, Grover M, Lu JT, Nagamani SCS, Dawson BC, Baldridge DM, Bainbridge MN, Cohn DH, Blazo M, Roberts TT, Brennen F-S, Wu Y, Gibbs RA, Melvin P, Campeau PM, Lee BH (2013) Phenotypic variability of osteogenesis imperfecta type V caused by an IFITM5 mutation. J Bone Miner Res In Press. doi:10.1002/jbmr.1891

  30. Semler O, Garbes L, Keupp K, Swan D, Zimmermann K, Becker J, Iden S, Wirth B, Eysel P, Koerber F, Schoenau E, Bohlander Stefan K, Wollnik B, Netzer C (2012) A Mutation in the 5′-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet 91(2):349–357. doi:10.1016/j.ajhg.2012.06.011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Cheung MS, Glorieux FH, Rauch F (2007) Natural history of hyperplastic callus formation in osteogenesis imperfecta type V. J Bone Miner Res 22(8):1181–1186. doi:10.1359/jbmr.070418

    Article  PubMed  Google Scholar 

  32. Zeitlin L, Rauch F, Travers R, Munns C, Glorieux FH (2006) The effect of cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta type V. Bone 38(1):13–20. doi:10.1016/j.bone.2005.07.020

    Article  CAS  PubMed  Google Scholar 

  33. Arundel P, Offiah A, Bishop NJ (2011) Evolution of the radiographic appearance of the metaphyses over the first year of life in type V osteogenesis imperfecta: clues to pathogenesis. J Bone Miner Res 26(4):894–898. doi:10.1002/jbmr.258

    Article  PubMed  Google Scholar 

  34. Brass AL, Huang IC, Benita Y, John SP, Krishnan MN, Feeley EM, Ryan BJ, Weyer JL, van der Weyden L, Fikrig E, Adams DJ, Xavier RJ, Farzan M, Elledge SJ (2009) The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile Virus, and dengue Virus. Cell 139(7):1243–1254

    Article  PubMed Central  PubMed  Google Scholar 

  35. Everitt AR, Clare S, Pertel T, John SP, Wash RS, Smith SE, Chin CR, Feeley EM, Sims JS, Adams DJ, Wise HM, Kane L, Goulding D, Digard P, Anttila V, Baillie JK, Walsh TS, Hume DA, Palotie A, Xue Y, Colonna V, Tyler-Smith C, Dunning J, Gordon SB, Smyth RL, Openshaw PJ, Dougan G, Brass AL, Kellam P (2012) IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484(7395):519–523

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Bailey CC, Huang IC, Kam C, Farzan M (2012) Ifitm3 limits the severity of acute influenza in mice. PLoS Pathog 8(9):e1002909. doi:10.1371/journal.ppat.1002909

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Huang IC, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, Brass AL, Ahmed AA, Chi X, Dong L, Longobardi LE, Boltz D, Kuhn JH, Elledge SJ, Bavari S, Denison MR, Choe H, Farzan M (2011) Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus and influenza A Virus. PLoS Pathog 7(1):e1001258

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hickford D, Frankenberg S, Shaw G, Renfree M (2012) Evolution of vertebrate interferon inducible transmembrane proteins. BMC Genomics 13(1):155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Moffatt P, Salois P, Gaumond MH, St-Amant N, Godin E, Lanctot C (2002) Engineered viruses to select genes encoding secreted and membrane-bound proteins in mammalian cells. Nucleic Acids Res 30(19):4285–4294

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Hanagata N, Li X (2011) Osteoblast-enriched membrane protein IFITM5 regulates the association of CD9 with an FKBP11–CD81–FPRP complex and stimulates expression of interferon-induced genes. Biochem Biophys Res Commun 409(3):378–384. doi:10.1016/j.bbrc.2011.04.136

    Article  CAS  PubMed  Google Scholar 

  41. Hanagata N, Takemura T, Monkawa A, Ikoma T, Tanaka J (2007) Phenotype and gene expression pattern of osteoblast-like cells cultured on polystyrene and hydroxyapatite with pre-adsorbed type-I collagen. Journal of Biomedical Materials Research Part A I83(2):362–371

    Article  Google Scholar 

  42. Liu Y, Liu H, Titus L, Boden SD (2012) Natural antisense transcripts enhance bone formation by increasing sense IFITM5 transcription. Bone 51(5):933–938. doi:10.1016/j.bone.2012.07.024

    Article  CAS  PubMed  Google Scholar 

  43. Martin TJ, Allan EH, Ho PWM, Gooi JH, Quinn JMW, Gillespie MT, Krasnoperov V, Sims NA (2010) Communication Between EphrinB2 and EphB4 Within the Osteoblast Lineage. In: Choi Y (ed) Osteoimmunology - Interactions of the Immune and skeletal systems II vol 658. Advances in Experimental Medicine and Biology. Springer US, pp 51–60

  44. Hanagata N, Li X, Morita H, Takemura T, Li J, Minowa T (2011) Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice. J Bone Miner Metab 29(3):279–290. doi:10.1007/s00774-010-0221-0

    Article  CAS  PubMed  Google Scholar 

  45. Lange UC, Adams DJ, Lee C, Barton S, Schneider R, Bradley A, Surani MA (2008) Normal germ line establishment in mice carrying a deletion of the Ifitm/Fragilis Gene family cluster. Mol Cell Biol 28(15):4688–4696. doi:10.1128/mcb.00272-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Jia R, Pan Q, Ding S, Rong L, Liu SL, Geng Y, Qiao W, Liang C (2012) The N-terminal region of IFITM3 modulates its antiviral activity through regulating IFITM3 cellular localization. Journal of virology In Press. doi:10.1128/jvi.01828-12

  47. Bogan R, Riddle RC, Li Z, Kumar S, Nandal A, Faugere M-C, Boskey A, Crawford SE, Clemens TL (2013) A mouse model for human osteogenesis imperfecta type VI. J Bone Miner Res In Press. doi:10.1002/jbmr.1892

  48. Kasaai B, Gaumond M-H, Moffatt P (2013) Regulation of the Bone-restricted ifitm-like (Bril) gene transcription by Sp and Gli family members and CpG methylation. J Biol Chem In Press. doi:10.1074/jbc.M113.457010

  49. Zankl A, Duncan Emma L, Leo Paul J, Clark Graeme R, Glazov Evgeny A, Addor M-C, Herlin T, Kim Chong A, Leheup Bruno P, McGill J, McTaggart S, Mittas S, Mitchell Anna L, Mortier Geert R, Robertson Stephen P, Schroeder M, Terhal P, Brown Matthew A (2012) Multicentric carpotarsal osteolysis is caused by mutations clustering in the amino-terminal transcriptional activation domain of MAFB. Am J Hum Genet 90(3):494–501. doi:10.1016/j.ajhg.2012.01.003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Glazov EA, Zankl A, Donskoi M, Kenna TJ, Thomas GP, Clark GR, Duncan EL, Brown MA (2011) Whole-exome re-sequencing in a family quartet identifies < italic > POP1</italic > mutations as the cause of a novel skeletal dysplasia. PLoS Genet 7(3):e1002027

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, Martin JS, Dansey R (2012) Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat Rev Drug Discov 11(5):401–419

    Article  CAS  PubMed  Google Scholar 

  52. Baron R, Rawadi G (2007) Targeting the Wnt/{beta}-catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148(6):2635–2643

    Article  CAS  PubMed  Google Scholar 

  53. Moester MJ, Papapoulos SE, Lowik CW, van Bezooijen RL (2010) Sclerostin: current knowledge and future perspectives. Calcif Tissue Int 87(2):99–107. doi:10.1007/s00223-010-9372-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, Robertson S, Savarirayan R, Sillence D, Spranger J, Unger S, Zabel B, Superti-Furga A (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155A(5):943–968. doi:10.1002/ajmg.a.33909

    Article  PubMed  Google Scholar 

  55. Crockett JC, Mellis DJ, Scott DI, Helfrich MH (2011) New knowledge on critical osteoclast formation and activation pathways from study of rare genetic diseases of osteoclasts: focus on the RANK/RANKL axis. Osteoporos Int 22(1):1–20. doi:10.1007/s00198-010-1272-8

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of interest

None

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. L. Duncan or G. P. Thomas.

Additional information

Emma L. Duncan and Gethin P. Thomas contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lazarus, S., Moffatt, P., Duncan, E.L. et al. A brilliant breakthrough in OI type V. Osteoporos Int 25, 399–405 (2014). https://doi.org/10.1007/s00198-013-2465-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-013-2465-8

Keywords

Navigation