Skip to main content

Advertisement

Log in

Decreased serum sclerostin levels in patients with primary hyperparathyroidism: a cross-sectional and a longitudinal study

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Decreased serum sclerostin was evident in patients with primary hyperparathyroidism and was inversely related to parathyroid hormone (PTH). Sclerostin normalized earlier than biochemical bone turnover markers (BTMs) following parathyroidectomy.

Introduction

There is limited information on the changes of serum sclerostin in conditions with chronic PTH excess in humans. The main objectives of the present study were to: (1) examine cross-sectionally the changes of serum sclerostin levels in patients with primary hyperparathyroidism (PHPT), (2) study the time course changes in serum sclerostin in PHPT patients following parathyroidectomy (PTX) followed up longitudinally for 12 months, and (3) compare the changes in serum sclerostin to that of BTMs.

Methods

We studied 60 PHPT patients and compared them with 74 PTX patients together with 268 age- and sex-matched healthy controls. Also, we followed 27 PTX patients longitudinally at 2, 4, 6, 10, 30, 60, 180, and 360 days postoperatively. Serum sclerostin, BTMs, and minerals were measured. Also, bone mineral density was determined by dual energy X-ray absorptiometry.

Results

Patients with PHPT exhibited significantly lower mean serum sclerostin [mean, in picomoles per liter; 95% confidence interval (CI)] (28.98; 27.94–30.03) than that obtained for PTX patients (37.01; 35.75–38.27) and healthy controls (46.22; 45.13–47.31) (P < 0.0001, for each case), respectively. Serum PTH inversely correlated with serum sclerostin (r = −0.651, P < 0.0001). Serum sclerostin was normalized in PTX patients by the tenth day postoperatively and remained within the expected reference range thereafter.

Conclusions

Significantly decreased serum sclerostin was evidenced in PHPT patients as compared with PTX and euparathyroid controls. The inverse PTH and sclerostin relationship suggests that sclerostin is downregulated by PTH in humans. Serum sclerostin normalized earlier than BTMs following parathyroidectomy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Silvestrini G, Ballanti P, Leopizzi M, Sebastiani M, Berni S, DiVitro M, Bonucci E (2007) Effects of intermittent parathyroid hormone (PTH) administration on SOST mRNA and protein in rat bone. J Molecu Histol 38:261

    Article  CAS  Google Scholar 

  2. Kneissel M (2009) The promise of sclerostin inhibition for the treatment of osteoporosis. IBM S BoneKEy 6:259–264

    Article  Google Scholar 

  3. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887

    Article  PubMed  CAS  Google Scholar 

  4. Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, Krumlauf R (2006) Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 21:1738–1749

    CAS  Google Scholar 

  5. Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Zhao L, Sabo PJ, Fu Y, Alisch RS, Gillett L, Colbert T, Tacconi P, Galas D, Hamersma H, Beighton P, Mulligan J (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68:577–589

    Article  PubMed  CAS  Google Scholar 

  6. Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmely P, Brown A, Gardner JC, Galas D, Schatzman RC, Beighton P, Papapoulos S, Hamersma H, Brunkow ME (2002) A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12–q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 110:144–152

    Article  PubMed  Google Scholar 

  7. Balemans W, Patel N, Ebeling M, van Hul E, Wuyts W, Lacza C, Dioszegi M, Dikkers FG, Hildering P, Willems PJ, Verheij JB, Lindpaintner K, Vickery B, Foernzler D, van Hul W (2002) Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 39:91–97

    Article  PubMed  CAS  Google Scholar 

  8. Mirza FS, Padhi ID, Raisz LG, Lorenzo JA (2010) Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab 95:1991–1997

    Article  PubMed  Google Scholar 

  9. Li X, Ominsky MS, Niu Q-T, Sun N, Daugherty B, D'Agostin D, Kurahara C, Gao Y, Cao J, Gong J, Asuncion F, Barrero M, Warmington K, Dwyer D, Stolina M, Morony S, Sarosi I, Kostenuik PJ, Lacey DL, Simonet WS, Ke HZ, Paszty C (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23(6):860–869

    Article  PubMed  Google Scholar 

  10. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel of BMP antagonist. EMBO J 22:6267–6276

    Article  PubMed  CAS  Google Scholar 

  11. Bellido T, Ali AA, Gubrij I, Plotkin LI, Iu Q, O'brien CA, Manolagas SC, Jilka RL (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146:4577–4583

    Article  PubMed  CAS  Google Scholar 

  12. Li X, Omnisky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shlhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C (2009) Sclerostin antibody treatment increases bone formation, bone mass and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24(4):578–588

    Article  PubMed  CAS  Google Scholar 

  13. Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, Gong J, Gao Y, Cao J, Graham K, Tipton B, Cai J, Deshpande R, Zhou L, Hale MD, Lightwood DJ, Henry AJ, Popplewell AG, Moore AR, Robinson MK, Lacey DL, Simonet WS, Paszty C (2010) Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res 25(5):948–959

    Article  PubMed  CAS  Google Scholar 

  14. Padhi D, Jang G, Stouch B, Fang L, Posvar E (2011) Single-dose, placebo-controlled, randomized study of AMG785, a sclerostin monoclonal antibody. J Bone Miner Res 26(1):19–26

    Article  PubMed  CAS  Google Scholar 

  15. van Lierop AH, Witteveen JE, Hamdy NAT, Papapoulos SE (2010) Patients with primary hyperparathyroidism have lower circulating levels than euparathyroid controls. Eur J Endocrinol 163:833–837

    Article  PubMed  Google Scholar 

  16. Ardawi M-SM, Qari MH, Rouzi AA, Maimani AA, Radaddi RM (2010) Vitamin D status in relation to obesity, bone mineral density, bone turnover markers and vitamin D receptor genotypes in healthy Saudi pre- and postmenopausal women. Osteoporos Int 22:462–475

    Google Scholar 

  17. Christiansen P, Steiniche T, Brixen K, Hessov I, Melsen F, Heickendroff L, Mosekilde LE (1999) Primary hyperparathyroidism: short-term changes in bone remodeling and bone mineral density following parathyroidectomy. Bone 25(2):237–244

    Article  PubMed  CAS  Google Scholar 

  18. Ardawi M-SM, Maimani AA, Bahksh TA, Rouzi AA, Qari MH, Radaddi RM (2010) Reference intervals of biochemical bone turnover markers for Saudi Arabian women: a crosssectional study. Bone 47:804–814

    Article  PubMed  CAS  Google Scholar 

  19. Christianser P, Steiniche T, Brixen K, Hessov I, Melsen F, Heickendroff L, Mosekilde LE (1999) Primary hyperparathyroidism: effect of parathyroidectomy on regional bone mineral density in Danish patients: a three-year follow-up study. Bone 25(5):589–595

    Article  Google Scholar 

  20. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Technical Report Series. WHO, Geneva, No. 843

    Google Scholar 

  21. Gaudio A, Pennisi P, Bratengeir C, Torrisi V, Linder B, Mangiafico RA, Pulvirenti I, Hawa G, Tringali G, Fiorce CE (2010) Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab 95:2248–2253

    Article  PubMed  CAS  Google Scholar 

  22. Modder UIL, Clowes JA, Hoey K, Peterson JM, McCready L, Oursler MJ, Riggs BL, Khosla S (2011) Regulation of circulating sclerostin levels by sex steroids in women and men. J Bone Miner Res 26(1):27–34

    Article  PubMed  CAS  Google Scholar 

  23. Modder UI, Hoey KA, Amin S, McCready LK, Chenbach SJ A, Riggs BL, Melton LJ III, Khosla S (2011) Relation of age, gender and bone mass to circulating sclerostin levels in women and men. J Bone Miner Res 26(2):373–379

    Article  PubMed  CAS  Google Scholar 

  24. McNulty M, Singh RJ, Li X, Bergstralh EJ, Kumar R (2011) Determination of serum and plasma sclerostin concentrations by enzyme-linked immunoassays. J Clin Endocrinol Metab 96:E1159–E1162

    Article  PubMed  Google Scholar 

  25. Guo CY, Thomas WE, AlDehaimi AW, Assiri AM, Eastell R (1996) Longitudinal changes in bone mineral density and bone turnover in postmenopausal women with primary hyperparathyroidism. J Clin Endocrinol Metab 81:3487–3491

    Article  PubMed  CAS  Google Scholar 

  26. Osterode W, Winker R, Bieglmayer C, Vierhapper H (2004) Effects of parathyroidectomy on lead mobilization from bone in patients with primary hyperparathyroidism. Bone 35:942–947

    Article  PubMed  CAS  Google Scholar 

  27. Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Roberson PK, Weinstein RS, O'Brien CA, Manolagas SC, Jilka RL (2003) Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 278:50259–50272

    Article  PubMed  CAS  Google Scholar 

  28. Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37:148–158

    Article  PubMed  CAS  Google Scholar 

  29. Aubin JE, Heersche JNM (2001) Cellular actions of parathyroid hormone on osteoblast and osteoclast differentiation. In: Bilezikian JP, Marcus R, Levine MA (eds) The parathyroids. Basic and clinical concepts. Academic, San Diego, pp 199–211

    Google Scholar 

  30. Pfeilschifter J, Munday GR (1987) Modulation of type β transforming growth factor activity in bone cultures by osteoporotic hormones. Proc Natl Acad Sci USA 84:2024–2028

    Article  PubMed  CAS  Google Scholar 

  31. Drake MT, Srinivasan B, Modder UI, Peterson JM, McCready LK, Riggs BL, Dwyer D, Stolina M, Kostenuik P, Khosla S (2010) Effects of parathyroid hormone treatment on circulating sclerostin levels in postmenopausal women. Bone Miner Res 95(11):5056–5062

    CAS  Google Scholar 

  32. Datta NS, Abou-Samra AB (2009) PTH and PTHrP signaling in osteoblasts. Cell Signal 21:1245–1254

    Article  PubMed  CAS  Google Scholar 

  33. Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Ministry of Higher Education for financial support to the Center of Excellence for Osteoporosis Research (CEOR) at King Abdulaziz University (grant #s CEOR/001-08 and CEOR/004-08), Jeddah, Saudi Arabia. We thank Dr. M. Bellal and Dr. A.A. Yousif at the Department of Surgery of the New Jeddah Clinic Hospital for their help in the longitudinal study of the present work. We thank all the subjects who participated in the present study, and we thank all the staff and colleagues at CEOR, King Abdulaziz University Hospital, New Jeddah Clinic Hospital, Al-Khandara Clinic Hospital, and the Primary Care Health Centers for their invaluable assistance during the execution of the present study. Special thanks are due to Ms. Veronica Orbacedo for her excellent secretarial help.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.-S. M. Ardawi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ardawi, MS.M., Al-Sibiany, A.M., Bakhsh, T.M. et al. Decreased serum sclerostin levels in patients with primary hyperparathyroidism: a cross-sectional and a longitudinal study. Osteoporos Int 23, 1789–1797 (2012). https://doi.org/10.1007/s00198-011-1806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1806-8

Keywords

Navigation