Skip to main content
Log in

Kardiale Aspekte von Elektroschockdistanzwaffen

Cardiac aspects of conducted electrical weapons (CEW)

  • Übersichten
  • Published:
Rechtsmedizin Aims and scope Submit manuscript

Zusammenfassung

Elektroschockdistanzwaffen, wie beispielsweise der Taser, werden bereits seit mehreren Jahren von Sondereinsatzkommandos der Polizei in Deutschland, Österreich und der Schweiz angewandt. Aufgrund aktueller politischer Veränderungen und der hiermit einhergehenden immer komplexer werdenden Anforderungen an Polizisten im Streifendienst wird derzeit eine flächendeckende Einführung der Tasergeräte diskutiert. In diesem Zusammenhang spielt die medizinische Risikobeurteilung dieser Technologie eine wichtige Rolle. Obwohl es seit Jahren mehrere Hundert Publikationen zu den pathophysiologischen Risiken von Elektroschockdistanzwaffen gibt, zeigt der Literaturvergleich medizinischer Veröffentlichungen zu diesem Thema ein teilweise uneinheitliches Bild, insbesondere bei der Fragestellung einer potenziellen Beeinflussung des Herzens.

Die vorliegende Arbeit setzt sich mit den kardialen Aspekten von Elektroschockdistanzwaffen auseinander. Mithilfe der medizinischen Datenbank PubMed wurden zu diesem Thema publizierte Fachartikel kritisch analysiert und miteinander verglichen.

Nach aktuellem wissenschaftlichen Informationsstand kann davon ausgegangen werden, dass bei fachgerechter Anwendung von Elektroschockdistanzwaffen keine klinisch relevanten pathophysiologischen Auswirkungen auf das Herz einer getroffenen, gesunden Person zu erwarten sind. Ein dem Grundsatz der Zweck- und Verhältnismäßigkeit folgender Einsatz von CEW ist daher als unbedenklich einzustufen.

Abstract

Conducted electrical weapons (CEWs), such as Taser devices, have been used by special police forces in Germany, Austria and Switzerland for several years. Due to current political changes and the increasing complexity of requirements for police officers in the field, a large-scale introduction of Taser devices is currently being discussed. In this context, the medical risk assessment of this new technology plays an important role. Although there have been several hundred articles on the pathophysiological risks of CEWs published over the last years, the literature comparison of medical publications on this subject reveals a partially inconsistent picture.

The present work deals with the cardiac aspects of CEWs. Using the medical database PubMed, articles published on this topic are critically evaluated and compared.

According to up-to-date scientific information, it can be assumed that with the proper application of CEWs, no clinically significant pathophysiological effects on the heart are to be expected. Using CEWs following the requirements of necessity and proportionality should therefore be classified as safe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Allison JS, Qin H, Dosdall DJ, Huang J, Newton JC, Allred JD, Smith WM, Ideker RE (2007) The transmural activation sequence in porcine and canine left ventricle is markedly different during long-duration ventricular fibrillation. J Cardiovasc Electrophysiol 18:1306–1312

    Article  PubMed  Google Scholar 

  2. Amnesty International USA, Trimel S (2012) Amnesty International urges stricter limits on police taser use as U.S. Death toll reaches 500. Press release 2012. http://www.amnestyusa.org/news/press-releases/amnesty-international-urges-stricter-limits-on-police-taser-use-as-us-death-toll-reaches-500. Zugegriffen: 13. Okt 2016

    Google Scholar 

  3. Anders S, Tsokos M, Püschel K (2002) Nachweis der Stromwirkung und des Stromweges im Körper. Rechtsmedizin 12:1–9

    Article  Google Scholar 

  4. Baldwin DE, Nagarakanti R, Hardy SP, Jain N, Borne DM, England AR, Nix ED, Daniels CL, Abide WP Jr, Glancy DI (2010) Myocardial infarction after taser exposure. J La State Med Soc 162:291–295

    PubMed  Google Scholar 

  5. Brave MA, Lakkireddy DR, Kroll MW, Panescu D (2016) Validity of the Small Swine Model for Human Electrical Safety Risks. Conf Proc IEEE Eng Med Biol Soc 38: 2343–2348

  6. Buchanan K, Muir RLM, Stokes K, Barone K (2015) Electronic defense weapon analysis and findings. State of Connecticut. Institute for Municipal & Regional Policy. Central Connecticut State University. http://www.ccsu.edu/imrp/projects/files/EDW.pdf. Zugegriffen: 13. Okt 16

    Google Scholar 

  7. Bux R, Andresen D, Rothschild MA (2002) Elektrowaffe ADVANCED TASER M 26. Funktionsweise, Wirksamkeit und Kasuistik. Rechtsmedizin 12:207–213

    Article  Google Scholar 

  8. Criscione JC, Kroll MW (2014) Incapacitation recovery times from a conductive electrical weapon exposure. Forensic Sci Med Pathol 10:203–207

    Article  PubMed  Google Scholar 

  9. Dawes DM, Ho J, Miner J (2009) The neuroendocrine effects of the TASER X26: a brief report. Forensic Sci Int 183:14–19

    Article  CAS  PubMed  Google Scholar 

  10. Dawes DM, Ho J, Moore JC, Laudenbach AP, Reardon RF, Miner JR (2014) An evaluation of two conducted electrical weapons using a swine comparative cardiac safety model. Forensic Sci Med Pathol 10:329–335

    Article  PubMed  Google Scholar 

  11. Dawes DM, Ho JD (2011) Re: myocardial infarction after TASER exposure. J La Sate Med Soc 162:291–295

    Google Scholar 

  12. Dawes DM, Ho JD, Moore JC, Miner JR (2013) Erratum to: an evaluation of two conducted electrical weapons and two probe designs using a swine comparative cardiac safety model. Forensic Sci Med Pathol 9:343

    Article  Google Scholar 

  13. Dawes DM, Ho JD, Reardon RF, Miner JR (2010) Echocardiographic evaluation of TASER X26 probe deployment into the chest of human volunteers. Am J Emerg Med 28:49–55

    Article  PubMed  Google Scholar 

  14. Dawes DM, Ho JD, Reardon RF, Miner JR (2010) The cardiovascular, respiratory, and metabolic effects of a long duration electronic control device exposure in human volunteers. Forensic Sci Med Pathol 6:268–274

    Article  PubMed  Google Scholar 

  15. Dawes DM, Ho JD, Reardon RF, Strote SR, Nelson RS, Lundin EJ, Orozco BS, Kunz SN, Miner JR (2011) The respiratory, metabolic, and neuroendocrine effects of a new generation electronic control device. Forensic Sci Int 207:55–60

    Article  PubMed  Google Scholar 

  16. Dawes DM, Ho JD, Sweeney JD, Lundin EJ, Kunz SN, Miner JR (2011) The effect of an electronic control device on muscle injury as determined by creatine kinase enzyme. Forensic Sci Med Pathol 7:3–8

    Article  CAS  PubMed  Google Scholar 

  17. Dawes DM, Ho JD, Vincent AS, Nystrom PC, Moore JC, Steinberg LW, Tilton AM, Brave MA, Berris MS, Miner JR (2014) The neurocognitive effects of simulated use-of-force scenarios. Forensic Sci Med Pathol 10:9–17

    Article  PubMed  Google Scholar 

  18. Dennis A, Valentino D, Walter R, Nagy K, Winners J, Bokhari F, Wiley D, Joseph K, Roberts R (2007) Acute effects of TASER X26 discharges in a swine model. J Trauma 63:581–590

    Article  PubMed  Google Scholar 

  19. Dudenhausen I (2016) Bekämpfung des Islamistischen Terrorismus. Kriminalistik 5:310–317

    Google Scholar 

  20. Eastman AL, Metzger JC, Pepe PE, Benitez FL, Decker J, Rinnert KJ, Field CA, Friese RS (2008) Conducted electrical devices: a prospective, population-based study of the medical safety of law enforcement use. J Trauma 64:1567–1572

    Article  PubMed  Google Scholar 

  21. Fieseler S, Zinka B, Peschel O, Kunz SN (2011) Elektrowaffe Taser® - Funktion, Wirkung, kritische Aspekte. Rechtsmedizin 21:535–540

    Article  Google Scholar 

  22. Genfer Abkommen (1949) Genfer Abkommen über den Schutz von Zivilpersonen in Kriegszeiten. http://www.admin.ch/ch/d/sr/i5/0.518.51.de.pdf. Zugegriffen: 13. Jul 2013

    Google Scholar 

  23. Haegli LM, Sterns LD, Adam DC, Leather RA (2006) Effect of a Taser shot to the chest of a patient with an implantable defibrillator. Heart Rhythm 3:339–341

    Article  Google Scholar 

  24. Hamlin RL, Burton RR, Leverett SD, Burns JW (1975) Ventricular activation process in minipigs. J Electrocardiol 8:113–116

    Article  CAS  PubMed  Google Scholar 

  25. Ho HJ, Dawes DM, Reardon RF, Lapine AL, Dolan BJ, Lundin EJ, Miner JR (2008) Echocardiographic evaluation of a TASER-X-26 application in the ideal human cardiac axis. Acad Emerg Med 15:838–844

    Article  PubMed  Google Scholar 

  26. Ho J, Dawes D, Miner J, Kunz SN, Nelson R, Williamson C, Sweeney J (2012) Conducted electrical weapon incapacitation during a goal-directed task as a function of probe spread. Forensic Sci Med Pathol 8:358–366

    Article  PubMed  Google Scholar 

  27. Ho JD, Dawes DM, Chang RJ, Nelson RS, Miner JR (2014) Physiologic effects of a new-generation conducted electrical weapon on human volunteers. J Emerg Med 46:428–435

    Article  PubMed  Google Scholar 

  28. Ho JD, Dawes DM, Heegaard WG, Miner JR (2009) Human research review of the TASER electronic control device. Conf Proc IEEE Eng Med Biol Soc 2009:3181–3183. doi:10.1109/iembs.2009.5334540

    PubMed  Google Scholar 

  29. Ho JD, Dawes DM, Reardon RF, Strote SR, Kunz SN, Nelson RS, Lundin EJ, Orozco BS, Miner JR (2011) Human cardiovascular effects of a new generation conducted electrical weapon. Forensic Sci Int 204:50–57

    Article  PubMed  Google Scholar 

  30. Hoffa M, Ludwig C (1850) Einige neue Versuche über Herzbewegungen. Z Ration Med 9:107–144

    Google Scholar 

  31. Howe BB, Fehn PA, Pensinger RR (1968) Comparative anatomical studies of the coronary arteries of canine and porcine hearts. I. Free ventricular walls. Acta Anat 71:13–21

    Article  CAS  PubMed  Google Scholar 

  32. Ideker RE, Dosdall DJ (2007) Can the direct cardiac effects of the electric pulses generated by the TASER X26 cause immediate or delayed sudden cardiac arrest in normal adults? Am J Forensic Med Pathol 28:195–201

    Article  PubMed  Google Scholar 

  33. International Electrotechnical Commission (2005) Effects of current on human beings and livestock: part 1 – general aspects. IEC 60479-1. IEC, Geneva

    Google Scholar 

  34. International Electrotechnical Commission (2006) Household and similar electrical appliances – safety – part 2 – 76: particular requirements for electric fence energizers. IEC 60335-2-76. Ed 2.1. IEC, Geneva

    Google Scholar 

  35. International Electrotechnical Commission (2007) Effects of current on human beings and livestock: part 2 – special aspects. IEC 60479-2. IEC, Geneva

    Google Scholar 

  36. International Electrotechnical Commission (2012) Medical electrical equipment – part 1: general requirements for basic safety and essential performance. IEC 60601-1:2005+A1. IEC, Geneva

    Google Scholar 

  37. Jauchem JR (2010) Deaths in custody: Are some due to electronic control devices (including TASER® devices) or excited delirium? J Forensic Leg Med 17:1–7

    Article  PubMed  Google Scholar 

  38. Jenkins DM Jr, Murray WB, Kennett MJ, Hughes EL, Werner JR (2013) The effect of continuous application of the TASER X26 waveform on Sus scrofa. J Forensic Sci 58:684–692

    Article  PubMed  Google Scholar 

  39. Kano M, Toyoshi T, Iwasaki S, Kato M, Shimizu M, Ota T (2005) QT PRODACT: usability of miniature pigs in safety pharmacology studies: assessment for drug-induced QT interval prolongation. J Pharmacol Sci 99:501–511

    Article  CAS  PubMed  Google Scholar 

  40. Karch SB (2016) The problem of police-related cardiac arrest. J Forensic Leg Med 41:36–41

    Article  PubMed  Google Scholar 

  41. Khaja A, Govindarajan G, McDaniel W, Flaker G (2011) Cardiac safety of conducted electrical devices in pigs and their effect on pacemaker function. Am J Emerg Med 29:1089–1096

    Article  PubMed  Google Scholar 

  42. Kornblum RN, Reddy SK (1991) Effects of the Taser in fatalities involving police confrontation. J Forensic Sci 36:434–438

    Article  CAS  PubMed  Google Scholar 

  43. Kreuzer A (2016) Flüchtlinge und Kriminalität. Kriminalistik 7:445–450

    Google Scholar 

  44. Kroll MW, Calkins H, Luceri RM, Graham MA, Heegaard WG (2008) Sensitive swine and TASER electronic control devices. Acad Emerg Med 15:695–696

    Article  PubMed  Google Scholar 

  45. Kroll MW, Lakkireddy DR, Stone JR, Luceri RM (2014) TASER electronic control devices and cardiac arrests: coincidental or causal? Supplement. Circulation 129:93–100

    Article  PubMed  Google Scholar 

  46. Kroll MW, Panescu D, Carver M, Kroll RM, Hinz AF (2009) Cardiac effects of varying pulse charge and polarity of TASER conducted electrical weapons. Conf Proc IEEE Eng Med Biol Soc 2009:3195–3198. doi:10.1109/iembs.2009.5333135

    PubMed  Google Scholar 

  47. Kroll MW, Panescu D, Ho JD, Luceri E, Igor R, Calkins H, Tchou PJ (2007) Potential errors in autopsy reports of custodial deaths temporally associated with electronic control devices: a cardiovascular perspective. American Academy of Forensic Science Annual Conference, San Antonio, S 284–285

    Google Scholar 

  48. Kunz SN (2016) Injuries and deaths during police operations/special weapons and tactics team. In: Byard R, Corey T, Henderson C, Payne-J (Hrsg) Encyclopedia of forensic and legal medicine, 2. Aufl. Elsevier, Amsterdam, S 249–255

    Google Scholar 

  49. Kunz SN, Aronshtam Y, Tränkler HR, Kraus S, Graw M, Peschel O (2014) Cardiac changes due to electronic control devices? A computer-based analysis of electrical effects at the human heart caused by an ECD pulse applied to the body’s exterior. J Forensic Sci 59:659–664

    Article  PubMed  Google Scholar 

  50. Kunz SN, Brandtner H, Monticelli F (2012) Elektrischer Strom im menschlichen Körper. Wirkung, Anwendungsgebiete und forensischer Nachweis. Rechtsmedizin 22:495–505

    Article  Google Scholar 

  51. Kunz SN, Grove C (2015) Risikoeinschätzung von Elektroschockdistanzwaffen – eine Übersichtsarbeit aus gerichtsärztlicher Sicht. SIAK J 1:94–101

    Google Scholar 

  52. Kunz SN, Grove C, Monticelli F (2014) Medizinische Aspekte gängiger nicht-letaler Wirkmittel. Wien Med Wochenschr 164:103–108

    Article  PubMed  Google Scholar 

  53. Kunz SN, Grove N, Fischer F (2012) Acute pathophysiological influences of conducted electrical weapons in humans: a review of current literature. Forensic Sci Int 221:1–4

    Article  CAS  PubMed  Google Scholar 

  54. Kunz SN, Monticelli F, Kaiser C (2012) Tod durch Elektroschockdistanzwaffen – eine reine Ausschlussdiagnose? Rechtsmedizin 22:369–373

    Article  Google Scholar 

  55. Kunz SN, Zinka B, Fieseler S, Graw M, Peschel O (2012) Functioning and effectiveness of electronic control devices such as the TASER® M‑ and X‑ series, a review of current literature. J Forensic Sci 57:1591–1594

    Article  PubMed  Google Scholar 

  56. Lakkireddy D, Wallick D, Verma A, Ryschon K, Kowalewski W, Wazni O, Butany J, Martin D, Tchou PJ (2008) Cardiac effects of electrical stun guns: does position of barbs contact make a difference? Pacing Clin Electrophysiol 31:398–408

    Article  PubMed  Google Scholar 

  57. Lakkireddy D, Khasnis A, Antenacci J, Ryshcon K, Chung MK, Wallick D, Kowalewski W, Patel D, Micochova H, Kondur A, Vacek J, Martin D, Natale A, Tchou P (2007) Do electrical stun guns (TASER X26) affect the functional integrity of implanted pacemakers and defibrillators? Europace 9:551–556

    Article  Google Scholar 

  58. Langley G (2009) The validity of animal experiments in medical research. Rev Semest Droit Anim 1:161–168

    Google Scholar 

  59. Leitgeb N (2014) Cardiac fibrillation risk of Taser weapons. Health Phys 106:652–659

    Article  CAS  PubMed  Google Scholar 

  60. Leitgeb N, Niedermayr F, Neubauer R (2012) Interference of implanted cardiac pacemakers with TASER X26 dart mode application. Biomed Tech 2057:201–206

    Google Scholar 

  61. McDaniel W, Stratbucker R, Smith R (2000) Surface application of Taser stun guns does not cause ventricular fibrillation in canines. Proc Annu Int Conf IEEE Eng Med Biol Soc 2000

  62. Nanthakumar K, Billingsley IM, Masse S, Dorian P, Cameron D, Chauhan VS, Downar E, Sevaptsidis E (2006) Cardiac electrophysiological consequence of neuromuscular incapacitating device discharges. J Am Coll Cardiol 48:798–804

    Article  PubMed  Google Scholar 

  63. Naunheim RS, Treaster M, Aubin C (2010) Ventricular fibrillation in a man shot with a Taser. Emerg Med J 27:645–646

    Article  PubMed  Google Scholar 

  64. Nickel R, Schummer A, Seiferle E (Hrsg) (2005) Kreislaufsystem, Haut und Hautorgane, 4. Aufl. Lehrbuch der Anatomie der Haustiere, Bd. 3. Parey, Stuttgart, S 53–56

    Google Scholar 

  65. Nimunkar AJ, Webster JG (2009) Safety of pulsed electric devices. Physiol Meas 30:101–114

    Article  PubMed  Google Scholar 

  66. Otahbachi M, Cevik C, Bagdure S, Nugent K (2010) Excited delirium, restraints, and unexpected death: a review of pathogenesis. Am J Forensic Med Pathol 31:107–112

    Article  PubMed  Google Scholar 

  67. Panescu D, Kroll M, Brave M (2015) Cardiac fibrillation risks with TASER conducted electrical weapons. Conf Proc IEEE Eng Med Biol Soc 2015:323–329. doi:10.1109/embc.2015.7318365

    PubMed  Google Scholar 

  68. Panescu D, Kroll M, Iverson C, Brave M (2014) The sternum as an electrical shield. Conf Proc IEEE Eng Med Biol Soc 2014:4464–4470. doi:10.1109/embc.2014.6944615

    PubMed  Google Scholar 

  69. Panescu D, Nerheim M, Kroll M (2013) Electrical safety of conducted electrical weapons relative to requirements of relevant electrical standards. Conf Proc IEEE Eng Med Biol Soc 2013:5342–5347. doi:10.1109/embc.2013.6610756

    PubMed  Google Scholar 

  70. Payne-James JJ, Green P, Johmston A (2014) Trends in less-lethal use of force techniques by police services within England and Wales: 2007–2011. Forensic Sci Med Pathol 10:50–55

    Article  PubMed  Google Scholar 

  71. Pippin JJ (2007) Taser research in pigs not helpful. J Am Coll Cardiol 49:731–732

    Article  PubMed  Google Scholar 

  72. Pound P, Ebrahim S, Sandercock P, Bracken MB, Roberts I (2004) Where is the evidence that animal research benefits humans? BMJ 328:514–517

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rettenberger M (2016) Die Einschätzung der Gefährlichkeit bei extremistischer Gewalt und Terrorismus. Kriminalistik 9:532–537

    Google Scholar 

  74. Institut für Health Care Engineering (2009) RITA I: Risikoanalyse TASER-X26-Distanzanwendung, Untersuchung in Bezug auf Stromstärken. Institut für Health Care Engineering, TU Graz

    Google Scholar 

  75. Schnabel PA, Richter J, Schmiedl A, Bach F, Barthels U, Ramsauer B, Gebhard MM, Bretschneider HJ (1991) Patterns of structural deterioration due to ischemia in Purkinje fibres and different layers of the working myocardium. Thorac Cardiovasc Surg 39:174–182

    Article  CAS  PubMed  Google Scholar 

  76. Strote J, Range Hutson H (2006) Taser use in restraint-related deaths. Prehosp Emerg Care 10:447–450

    Article  PubMed  Google Scholar 

  77. Torkamani A, Muse ED, Spencer EG, Rueda M, Wagner GN, Lucas JR, Topol EJ (2016) Molecular autopsy for sudden unexpected death. JAMA 316:1492–1494

    Article  PubMed  Google Scholar 

  78. UK Government, Home Office (2015) Figures on the reported and recorded uses of TASER by police forces in England and Wales. http://data.gov.uk/dataset/recorded-use-taser-england-wales. Zugegriffen: 26. Dez 2016

    Google Scholar 

  79. Underwriters Laboratories (2009) UL standard for electric-fence controllers, 10. Aufl. UL 69. UL Laboratories, Northbrook

    Google Scholar 

  80. Valentino DJ, Walter RJ, Dennis AJ, Margeta B, Starr F, Nagy KK, Bokari F, Wiley DE, Joseph KT, Roberts RR (2008) Taser X26 discharge in Swine: ventricular rhythm capture is dependent on discharge vector. J Trauma 65:1478–1485

    Article  PubMed  Google Scholar 

  81. Vanga SR, Bommana S, Kroll MW, Swerdlow C, Lakkireddy D (2009) Taser conducted electrical weapons and implanted pacemakers and defibrillators. Confproc Ieee Eng Med Biol Soc 2009:3199–3204. doi:10.1109/iembs.2009.5333136

    Google Scholar 

  82. Vilke GM, Chan TC, Karch S (2013) Letter by Vilke et al. regarding article, “sudden cardiac arrest and death following application of shocks from a TASER electronic control device”. Circulation 127:e258

    Article  PubMed  Google Scholar 

  83. Waffengebrauchsgesetz (WaffGebrG) (1969) https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10005345. Zugegriffen: 16. Jul 2013

  84. Walcott GP, Kroll MW, Ideker RE (2015) Ventricular fibrillation: are swine a sensitive species? J Interv Card Electrophysiol 42:83–89

    Article  PubMed  Google Scholar 

  85. Walter RJ, Dennis AJ, Valentino DJ, Margeta B, Nagy KK, Bokhari F, Wiley DE, Joseph KT, Roberts RR (2008) TASER X26 discharge in swine produce potentially fatal ventricular arrhythmias. Acad Emerg Med 15:66–73

    Article  PubMed  Google Scholar 

  86. Wu JY, Sun H, O’Rourke AP, Huebner SM, Rahko PS, Will JA, Webster JG (2008) Taser blunt probe dart-to-heart distance causing ventricular fibrillation in pigs. IEEE Trans Biomed Eng 55:2768–2771. doi:10.1109/tbme.2008.2002154

    Article  PubMed  Google Scholar 

  87. Zack F, Rummel J, Wegener R, Büttner A (2009) Plötzlicher Tod nach der Festnahme eines exzitierten Mannes. Rechtsmedizin 19:341–344

    Article  Google Scholar 

  88. Zipes DP (2012) Sudden cardiac arrest and death following application of shocks from a TASER electronic control device. Circulation 125:2417–2422

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kunz.

Ethics declarations

Interessenkonflikt

S. N. Kunz und J. Adamec geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunz, S.N., Adamec, J. Kardiale Aspekte von Elektroschockdistanzwaffen. Rechtsmedizin 27, 79–86 (2017). https://doi.org/10.1007/s00194-017-0147-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00194-017-0147-0

Schlüsselwörter

Keywords

Navigation