Skip to main content
Log in

Visualisierung latenter Blutspuren

Visualization of latent bloodstains

  • CME Weiterbildung · Zertifizierte Fortbildung
  • Published:
Rechtsmedizin Aims and scope Submit manuscript

Zusammenfassung

Erfassung und Interpretation latenter Blutspuren sind wichtige Bestandteile der Blutspurenverteilungsanalyse. Die Suche nach bei Normalbeleuchtung nichtsichtbaren Blutspuren mithilfe spezieller Beleuchtungstechniken, der Luminolsprühmethode und chemischer Kontrastverstärkung durch Leukokristallviolett (LCV) ermöglicht den differenzierten Nachweis von Blutspuren und Reinigungsmaßnahmen, die dem Gutachter initial nicht zugänglich waren. Forensische Lichtquellen sind in der Lage, Licht unterschiedlicher Wellenlänge zu emittieren und so unsichtbare Spuren dem menschlichen Auge zugänglich zu machen. Luminol ist ein Substanzgemisch, das bei Kontakt mit Blut eine blaue Chemilumineszenz erzeugt und so die latente Blutspur kurzzeitig zum Vorschein bringt. Chemische Kontrastverstärker wie LCV weisen durch katalytische Farbreaktionen den Hämanteil des Hämoglobins nach und machen latente Blutspuren dem Gutachter bleibend zugänglich. Die systematische Analyse primär sichtbarer und latenter Blutspuren, einhergehend mit einer standardisierten Dokumentation, ist für die Rekonstruktion von Geschehensabläufen essenziell und dient als wesentliche Hilfe bei der Differenzierung zwischen Unfall, Tötungsdelikt und Suizid.

Abstract

Visualization and interpretation of latent bloodstains is an essential part of bloodstain pattern analysis. The search for latent bloodstains with the help of a variable light source, luminol searching technique and visual enhancement chemicals, such as leucocrystal violet enables a differentiated analysis of transferred bloodstains, dripped and splashed blood, blood imprints and cleaning measures. Alternative light sources are used to enhance the contrast of bloodstains on surfaces where the stain is originally not visible to the naked eye. Luminol is a solution that interacts with iron present in blood creating a chemiluminescence which reveals latent bloodstains for a short period of time. Visual enhancement chemicals such as leucocrystal violet generate a permanent purple-blue coloration when it comes into contact with the heme portion of hemoglobin in blood. A highly qualified analysis of visible bloodstains and latent impressions in blood, together with standardized documentation is an important part of the investigation and crime scene reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  1. Peschel O, Mützel E, Rothschild MA (2008) Blutspuren-Verteilungsanalyse. Rechtsmedizin 18:131–146

    Article  Google Scholar 

  2. Stoilovic M (1991) Detection of semen and blood stains using polylight as a light source. Forensic Sci Int 51:289–296

    Article  PubMed  CAS  Google Scholar 

  3. Beil F (1937) Die Infrarot-Photographie in der Gerichtlichen Medizin und Kriminalistik. Inauguraldissertation, Institut für Rechtsmedizin, München

  4. Raymond AR, Hall RL (1986) An interesting application of infra-red reflection photography to blood splash pattern interpretation. Forensic Sci Int 31:189–194

    Article  Google Scholar 

  5. DuChesne A, Bajanowski T, Brinkmann B (1993) Auffindung und Dokumentation maskierter Blutspuren mit Infrarottechnik. Arch Kriminol 192:159–166

    CAS  Google Scholar 

  6. Grodsky M, Wright K, Kirk PL (1951) Simplified preliminary blood testing. An improved technique and a comparative study of methods. J Crim Law Criminol Police Sci 42:95–104

    Article  CAS  Google Scholar 

  7. Johnston E, Ames CE, Dagnall KE et al (2008) Comparison of presumptive blood test kits including hexagon OBTI. J Forensic Sci 53:687–689

    Article  PubMed  CAS  Google Scholar 

  8. Tobe SS, Watson N, Daéid NN (2007) Evaluation of six presumptive tests for blood, their specificity, sensitivity and effect on high molecular-weight DNA. J Forensic Sci 52:102–109

    Article  PubMed  CAS  Google Scholar 

  9. Albrecht HO (1928) Über die Chemiluminescenz des Aminophthalsäure Anhydrids. Z Phys Chem 136:321

    Google Scholar 

  10. Lytle LT, Hedgecock DG (1978) Chemiluminescence in the visualization of forensic bloodstains. J Forensic Sci 23:550–555

    PubMed  CAS  Google Scholar 

  11. Castello A, Alvarez M, Verdu F (2002) Accuracy, reliability, and safety of luminol in bloodstain investigation. Can Soc Forensic Sci 2:113–121

    Google Scholar 

  12. Thornton JI, Guarino K, Rios FG, Cashman PJ (1986) Enhancement of the luminol test by means of light amplification. J Forensic Sci 31:254–257

    PubMed  CAS  Google Scholar 

  13. Pex JO (2005) The use and limitations of luminol in bloodstain pattern analysis. News (IABPA) 21:11–15

    Google Scholar 

  14. Carter AL (2001) The directional analysis of bloodstain patterns theory and experimental validation. Can Soc Forensic Sci J 34:173–189

    Google Scholar 

  15. Weber K (1995) Die Anwendung der Chemilumineszenz des Luminols. Z Gerichtl Med 57:410

    Article  Google Scholar 

  16. Adair TW, Shaw RL (2005) Enhancement of bloodstains on washed clothing using luminol and LCV reagents. News (IABPA) 21:4–10

    Google Scholar 

  17. Barni F, Lewis SW, Berti A et al (2007) Forensic application of the luminol reaction as a presumptive test for latent blood detection. Talanta 72:896–913

    Article  PubMed  CAS  Google Scholar 

  18. Quickenden TI, Creamer JI (2001) A study of common interferences with the forensic luminol test for blood. Luminescence 16:295–298

    Article  PubMed  CAS  Google Scholar 

  19. Quickenden TI, Ennis CP, Creamer JI (2004) The forensic use of luminol chemiluminescence to detect traces of blood inside motor vehicles. Luminescence 19:271–277

    Article  PubMed  CAS  Google Scholar 

  20. Tice R (1997) Review of toxicological literature, report prepared by „integrated laboratory systems“ for National Institute of Environmental. Health Sciences, Research Triangle Park, North South Carolina

  21. Sanders JM, Chen LJ, Burka LT, Matthews HM (2000) Metabolism and disposition of luminol in the rat. Xenobiotica 30:263–272

    Article  PubMed  CAS  Google Scholar 

  22. Abramian DS, Romanov SR, Smagina LV, Glebov OK (1994) Agents that act on chromatin structure affect the rate of intrachromasomal homologous DNA recombination in cultured cells. Tsitologii 36:1012–1021

    CAS  Google Scholar 

  23. Larkin T, Gannicliffe C (2008) Illuminating the health and safety of luminol. Sci Justice 48:71–75

    Article  PubMed  CAS  Google Scholar 

  24. Irie S (1960) The treatment of alopecia areata with 3-aminophthalhydrazide. Curr Ther Res 2:107–110

    PubMed  CAS  Google Scholar 

  25. Irie S (1961) The treatment of wounds with 3-aminophthalhydrazide. Am Surg 27:642–645

    PubMed  CAS  Google Scholar 

  26. Irie S (1960) Influence of 3-aminophthalhydrazide on the prothrombin time. Curr Ther Res 2:153–157

    PubMed  CAS  Google Scholar 

  27. Home Office Police Scientific Development Branch (2003) Fingerprint development and imaging update. Publication No. 26/2003. Intern Report, London

  28. Bodziak WJ (1996) Use of leuco crystal violet to enhance shoe prints in blood. Forensic Sci Int 82:45–52

    Article  PubMed  CAS  Google Scholar 

  29. Farrugia KJ, NicDaéid N, Savage KA, Bandey H (2010) Chemical enhancement of footwear impressions in blood deposited on fabric – Evaluating the use of alginate casting materials followed by chemical enhancement. Sci Just 50:200–204

    Article  CAS  Google Scholar 

  30. Bossers LC, Roux C, Bell M, McDonagh AM (2011) Methods for the enhancement of fingermarks in blood. Forensic Sci Int 210:1–11

    Article  PubMed  CAS  Google Scholar 

  31. De Haan DJ, Clark JD, Spear TF et al (o J) Chemical enhancement of fingerprints in blood: an evaluation of methods, effects on DNA and assessment of chemical hazards. http://www.latent-prints.com/cac_blood.htm. Zugegriffen 07. Oktober 2011

  32. Adair TW (2005) Casting two-dimensional bloody shoe prints from concrete, fabric, and human skin: a review of several methods with recommendations. IABPA News. March 2005:4–8

    Google Scholar 

  33. James SH, Kish PE, Sutton TP (2005) Principles of bloodstain pattern analysis – Theory and practice. CRC, Boca Raton

  34. Della Manna A, Montpetit S (2000) A novel approach to obtaining reliable PCR results from luminol treated bloodstains. J Forensic Sci 45:886–890

    Google Scholar 

  35. Budowle B, Leggitt JL, Defenbaugh DA et al (2000) The presumptive reagent fluorescein for detection of dilute bloodstains and subsequent STR typing of recovered DNA. J Forensic Sci 45:1090–1092

    PubMed  CAS  Google Scholar 

  36. Peschel O, Kunz SN, Rothschild MA, Mützel E (2011) Blood stain pattern analysis. Forensic Sci Med Pathol 7:257–270

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.N. Kunz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunz, S., Adamec, J., Gilg, T. et al. Visualisierung latenter Blutspuren. Rechtsmedizin 22, 61–72 (2012). https://doi.org/10.1007/s00194-011-0794-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00194-011-0794-5

Schlüsselwörter

Keywords

Navigation