Skip to main content

Advertisement

Log in

IUGA committee opinion: laser-based vaginal devices for treatment of stress urinary incontinence, genitourinary syndrome of menopause, and vaginal laxity

  • Clinical Opinion
  • Published:
International Urogynecology Journal Aims and scope Submit manuscript

Abstract

This committee opinion reviews the laser-based vaginal devices for treatment of genitourinary syndrome of menopause, vaginal laxity, and stress urinary incontinence. The United States Food and Drug Administration has issued a warning for unsubstantiated advertising and use of energy-based devices. Well-designed case–control studies are required to further investigate the potential benefits, harm, and efficacy of laser therapy in the treatment of genitourinary syndrome of menopause, vaginal laxity, and stress urinary incontinence. The therapeutic advantages of nonsurgical laser-based devices in urogynecology can only be recommended after robust clinical trials have demonstrated their long-term complication profile, safety, and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Salvatore S, et al. Histological study on the effects of microablative fractional CO2 laser on atrophic vaginal tissue: an ex vivo study. Menopause. 2015;22(8):845–9.

    Article  PubMed  Google Scholar 

  2. FDA. FDA warns against use of energy-based devices to perform vaginal 'rejuvenation' or vaginal cosmetic procedures: FDA Safety Communication. 2018. [2018 August 1].

  3. Practice, C.o.G. ACOG Committee opinion no. 378: vaginal rejuvenation and cosmetic vaginal procedures. Obstet Gynecol. 2007;110(3):737.

    Article  Google Scholar 

  4. American-College-of-Plastic-Surgeons. Nonsurgical vaginal rejuvenation. 2018. [29 October 2018]. Available from: https://www.plasticsurgery.org/cosmetic-procedures/nonsurgical-vaginal-rejuvenation.

  5. Nappi RE, et al. Vulvar and vaginal atrophy in four European countries: evidence from the European REVIVE survey. Climecteric. 2016;19:188–97.

    Article  CAS  Google Scholar 

  6. Portman DJ, ML G. Vulvovaginal atrophy terminology consensus conference panel. Genitourinary syndrome of menopause: new terminology for vulvovaginal atrophy from the International Society for the Study of Women's sexual health and the North American Menopause Society. Menopause. 2014;21:1063–8.

    Article  PubMed  Google Scholar 

  7. Pardo JS, Solà VD, Ricci PA. Colpoperineoplasty in women with a sensation of a wide vagina. Acta Obstet Gynecol Scand. 2006;85:1125–7.

    Article  PubMed  Google Scholar 

  8. Moore RD, Miklos JR, O C. Evaluation of sexual function outcomes in women undergoing vaginal rejuvenation/vaginoplasty procedures for symptoms of vaginal laxity/decreased vaginal sensation utilizing validated sexual function questionnaire (PISQ-12). Surg Technol Int. 2014;24:253–60.

    PubMed  Google Scholar 

  9. Haylen BT, et al. An International Urogynecological Association (IUGA)/International Continence Society (ICS) joint report on the terminology for female pelvic organ prolapse (POP). Neurourol Urodyn. 2016;35(2):137–68.

    Article  PubMed  Google Scholar 

  10. Pauls RN, Fellner AN, GW D. Vaginal laxity: a poorly understood quality of life problem; a survey of physician members of the International Urogynecological Association (IUGA). Int Urogynecol J. 2012;23:1435–48.

    Article  PubMed  Google Scholar 

  11. Millheiser L, Kingsberg S, Pauls R. A cross-sectional survey to assess the prevalence and symptoms associated with laxity of the vaginal introitus [abstract 206]. In: ICS Annual Meeting. Toronto, Ontario, Canada; 2010.

  12. Roos AM, Sultan AH, R T. Sexual problems in the gynecology clinic: are we making a mountain out of a molehill? Int Urogynecol J. 2012;23:145–52.

    Article  PubMed  Google Scholar 

  13. MacLennan AH, Taylor AW, Wilson DH. The prevalence of pelvic floor disorders and their relationship to gender, age, parity and mode of delivery. BJOG. 2000;107:1460–70.

    Article  CAS  PubMed  Google Scholar 

  14. Karcher C, N S. Vaginal rejuvenation using energy-based devices. Int J Womens Dermatol. 2016;2:85–8.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tadir Y, et al. Light and energy based therapeutics for genitourinary syndrome of menopause: consensus and controversies. Lasers Surg Med. 2017;49:137–59.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lang P, Karram M. Lasers for pelvic floor dysfunctions: is there evidence? Curr Opin Obstet Gynecol. 2017;29(5):354–8.

    Article  PubMed  Google Scholar 

  17. Arunkalaivanan A, Kaur H, Onuma O. Laser therapy as a treatment modality for genitourinary syndrome of menopause: a critical appraisal of evidence. Int Urogynecol J. 2017;28:681–5.

    Article  PubMed  Google Scholar 

  18. Isaza PG, Jaguszewska K, Cardona JL, Lukaszuk M. Long-term effect of thermoablative fractional CO2 laser treatment as a novel approach to urinary incontinence management in women with genitourinary syndrome of menopause. Int Urogynecol J. 2018;29(2):211–5.

  19. Lapii GA, Yakovleva AY, Neimark AI. Structural reorganization of the vaginal mucosa in stress urinary incontinence under conditions of Er:YAG laser treatment. Bull Exp Biol Med. 2017;162(4):510–4.

    Article  CAS  PubMed  Google Scholar 

  20. Alexiades-Armenakas MR, Dover JS, Arndt KA. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing. J Am Acad Dermatol. 2008;58(5):719–37.

    Article  PubMed  Google Scholar 

  21. Pitsouni E, et al. Microablative fractional CO2-laser therapy and the genitourinary syndrome of menopause: an observational study. Maturitas. 2016;94:131–6.

    Article  PubMed  Google Scholar 

  22. Siliquini GP, et al. Fractional CO2 laser therapy: a new challenge for vulvovaginal atrophy in postmenopausal women. Climacteric. 2017;20(4):379–84.

    Article  CAS  PubMed  Google Scholar 

  23. Sokol ER, Karram MM. An assessment of the safety and efficacy of a fractional CO2 laser system for the treatment of vulvovaginal atrophy. Menopause. 2016;23(10):1102–7.

    Article  PubMed  Google Scholar 

  24. Sokol ER, Karram MM. Use of a novel fractional CO2 laser for the treatment of genitourinary syndrome of menopause: 1-year outcomes. Menopause. 2017;24(7):810–4.

    Article  PubMed  Google Scholar 

  25. Gaspar A, et al. Efficacy of erbium:YAG laser treatment compared to topical estriol treatment for symptoms of genitourinary syndrome of menopause. Lasers Surg Med. 2017;49(2):160–8.

    Article  PubMed  Google Scholar 

  26. Behnia-Willison F, et al. Safety and long-term efficacy of fractional CO2 laser treatment in women suffering from genitourinary syndrome of menopause. Eur J Obstet Gynecol Reprod Biol. 2017;213:39–44.

    Article  PubMed  Google Scholar 

  27. Pieralli A, et al. Erratum to: Long-term reliability of fractioned CO2 laser as a treatment for vulvovaginal atrophy (VVA) symptoms. Arch Gynecol Obstet. 2017;296(6):1237.

    Article  PubMed  Google Scholar 

  28. Cruz VL, Steiner ML, Pompei LM, Strufaldi R, Fonseca FLA, Santiago LHS, et al. Randomized, double-blind, placebo-controlled clinical trial for evaluating the efficacy of fractional CO2 laser compared with topical estriol in the treatment of vaginal atrophy in postmenopausal women. Menopause. 2018;25(1):21–8.

  29. Gambacciani M, et al. Rationale and design for the vaginal erbium laser academy study (VELAS): an international multicenter observational study on genitourinary syndrome of menopause and stress urinary incontinence. Climacteric. 2015;18(Suppl 1):43–8.

    Article  PubMed  Google Scholar 

  30. Gambacciani M, Levancini M, Cervigni M. Vaginal erbium laser: the second-generation thermotherapy for the genitourinary syndrome of menopause. Climacteric. 2015;18(5):757–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cardozo L. Fractional microablative CO2-laser versus photothermal non-ablative erbium:YAG-laser for the management of genitourinary syndrome of menopause: a non-inferiority, single-blind randomised controlled trial https://clinicaltrials.gov/ct2/show/NCT03288883?cond=gsm&rank=32018. Available from: https://clinicaltrials.gov/ct2/show/NCT03288883?cond=gsm&rank=3. Accessed 26 Nov 2018.

  32. Gaspar A, Brandi H. Non-ablative erbium YAG laser for the treatment of type III stress urinary incontinence (intrinsic sphincter deficiency). Lasers Med Sci. 2017;32(3):685–91.

    Article  PubMed  Google Scholar 

  33. Fistonic N, et al. Minimally invasive, non-ablative Er:YAG laser treatment of stress urinary incontinence in women--a pilot study. Lasers Med Sci. 2016;31(4):635–43.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pardo JI, Sola VR, Morales AA. Treatment of female stress urinary incontinence with erbium-YAG laser in non-ablative mode. Eur J Obstet Gynecol Reprod Biol. 2016;204:1–4.

    Article  PubMed  Google Scholar 

  35. Fistonić N, et al. First assessment of short-term efficacy of Er: YAG laser treatment on stress urinary incontinence in women: prospective cohort study. Climacteric. 2015;18(sup1):37–42.

    Article  PubMed  Google Scholar 

  36. Ogrinc UB, Sencar S, Lenasi H. Novel minimally invasive laser treatment of urinary incontinence in women. Lasers Surg Med. 2015;47(9):689–97.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fistonic I, et al. Laser treatment of early stages of stress urinary incontinence significantly improves sexual life. In: Annual Conference of European Society for Sexual Medicine. 2012.

  38. Khalafalla M, et al. Minimal invasive laser treatment for female stress urinary incontinence. Obstet Gynecol Int J. 2015;2(2):00035.

    Article  Google Scholar 

  39. Tien YW, et al. Effects of laser procedure for female urodynamic stress incontinence on pad weight, urodynamics, and sexual function. Int Urogynecol J. 2017;28(3):469–76.

    Article  PubMed  Google Scholar 

  40. Pergialiotis V, et al. A systematic review on vaginal laser therapy for treating stress urinary incontinence: do we have enough evidence? Int Urogynecol J. 2017.

  41. FDA. Statement from FDA Commissioner Scott Gottlieb, M.D., on efforts to safeguard women’s health from deceptive health claims and significant risks related to devices marketed for use in medical procedures for vaginal rejuvenation. 2018. (cited 2018 August 1).

Download references

Acknowledgements

The authors would like to thank Dr. Veronica Mallet (2017 committee member) and Dr. Pallavi Latthe (2018-2019 committee chair) for their invaluable contributions to this manuscript.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to S. Abbas Shobeiri.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shobeiri, S.A., Kerkhof, M.H., Minassian, V.A. et al. IUGA committee opinion: laser-based vaginal devices for treatment of stress urinary incontinence, genitourinary syndrome of menopause, and vaginal laxity. Int Urogynecol J 30, 371–376 (2019). https://doi.org/10.1007/s00192-018-3830-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00192-018-3830-0

Keywords

Navigation