Skip to main content
Log in

A critique of Stewart’s approach: the chemical mechanism of dilutional acidosis

  • Physiological and Technical Notes
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

While Stewart’s acid-base approach is increasingly used in clinical practice, it has also led to new controversies. Acid-base disorders can be seen from different viewpoints: on the diagnostic/clinical, quantitative/mathematical, or the mechanistic level. In recent years, confusion in the interpretation and terminology of Stewart’s approach has arisen from mixing these different levels. This will be demonstrated on the basis of a detailed analysis of the mechanism of "dilutional acidosis." In the classical dilution concept, metabolic acidosis after resuscitation with large volumes is attributed to the dilution of serum bicarbonate. However, Stewart’s approach rejects this explanation and offers an alternative one that is based on a decrease in a “strong ion difference.” This mechanistic explanation is questionable for principal chemical reasons. The objective of this study is to clarify the chemical mechanism of dilutional acidosis.

Methods

Experimental data and simulations of various dilution experiments, as well as theoretical and chemical considerations were used.

Results

1. The key to understanding the mechanism of dilutional acidosis lies in the open CO2/HCO3 -buffer system where the buffer base (HCO3 ) is diluted whereas the buffer acid is not diluted (constant pCO2). 2. The categorization in independent and dependent variables depends on the system regarded. 3. Neither the principle of electroneutrality, nor a change in [SID], nor increased H2O dissociation plays a mechanistic role.

Conclusion

Stewart’s approach is valid at the mathematical level but does not provide any mechanistic insights. However, the quantification and categorization of acid-base disorders, using Stewart approach, may be helpful in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stewart PA (1978) Independent and dependent variables of acid-base control. Respir Physiol 33:9–26

    Article  CAS  PubMed  Google Scholar 

  2. Figge J, Mydosh T, Fencl V (1992) Serum proteins and acid-base equilibria: a follow-up. J Lab Clin Med 120:713–719

    CAS  PubMed  Google Scholar 

  3. Watson PD (1999) Modeling the effects of proteins on pH in plasma. J Appl Physiol 86:1421–1427

    CAS  PubMed  Google Scholar 

  4. Constable PD (1997) A simplified strong ion model for acid-base equilibria: application to horse plasma. J Appl Physiol 83:297–311

    CAS  PubMed  Google Scholar 

  5. Siggaard-Andersen O, Fogh-Andersen N (1995) Base excess or buffer base (strong ion difference) as measure of a non-respiratory acid-base disturbance. Acta Anaesthesiol Scand Suppl 107:123–128

    Article  CAS  PubMed  Google Scholar 

  6. Haskins SC, Hopper K, Rezende ML (2006) The acid-base impact of free water removal from, and addition to, plasma. J Lab Clin Med 147:114–120

    Article  CAS  PubMed  Google Scholar 

  7. Doberer D, Funk GC, Schneeweiss B (2003) Dilutional acidosis: an endless story of confusion. Crit Care Med 31:337–338

    Article  PubMed  Google Scholar 

  8. Kurtz I, Kraut J, Ornekian V, Nguyen MK (2008) Acid-base analysis: a critique of the Stewart and bicarbonate-centered approaches. Am J Physiol Renal Physiol 294:F1009–F1031

    Google Scholar 

  9. Corey HE (2003) Stewart and beyond: new models of acid-base balance. Kidney Int 64:777–787

    Article  CAS  PubMed  Google Scholar 

  10. Dubin A, Menises MM, Masevicius FD, Moseinco MC, Kutscherauer DO, Ventrice E, Laffaire E, Estenssoro E (2007) Comparision of the three different methods of evaluation of metabolic acid-base disorders. Crit Care Med 35:1264–1270

    Article  CAS  PubMed  Google Scholar 

  11. Story DA (2004) Bench-to-bedside review: a brief history of clinical acid-base. Crit Care 8:253–258

    Article  PubMed  Google Scholar 

  12. Sirker AA, Rhodes A, Grounds RM, Bennett ED (2002) Acid-base physiology: the ‘traditional’ and the ‘modern’ approaches. Anaesthesia 57:348–356

    Article  CAS  PubMed  Google Scholar 

  13. Kaplan L (2007) Acid-base balance analysis: a little of target. Crit Care Med 35:1418–1419

    Article  PubMed  Google Scholar 

  14. Constable PD (2003) Hyperchloremic acidosis: the classic example of strong ion acidosis. Anesth Analg 96:919–922

    Article  CAS  PubMed  Google Scholar 

  15. Kellum JA, Elbers PWG (2009) Stewart’s textbook of acid-base, 2nd edn. AcidBase.org, Amsterdam

    Google Scholar 

  16. Stewart PA (1981) How to understand acid-base. A quantitative acid-base primer for biology and medicine. Elsevier, New York

    Google Scholar 

  17. Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1444–1461

    CAS  PubMed  Google Scholar 

  18. Mathes DD, Morell RC, Rohr MS (1997) Dilutional acidosis: is it a real clinical entity? Anesthesiology 86:501–503

    Article  CAS  PubMed  Google Scholar 

  19. Prough DS, White RT (2000) Acidosis associated with perioperative saline administration: dilution or delusion? Anesthesiology 93:1167–1169

    Article  CAS  PubMed  Google Scholar 

  20. Prough DS, Bidani A (1999) Hyperchloremic metabolic acidosis is a predictable consequence of intraoperative infusion of 0.9% saline. Anesthesiology 90:1247–1249

    Article  CAS  PubMed  Google Scholar 

  21. Kellum JA (2002) Saline-induced hyperchloremic metabolic acidosis. Crit Care Med 30:259–261

    Article  PubMed  Google Scholar 

  22. Peters JP, Van Slyke DD (1946) Quantitative clinical chemistry: interpretations. Williams & Wilkins, Baltimore

    Google Scholar 

  23. Shires GT, Holman J (1948) Dilutional acidosis. Ann Intern Med 28:557–559

    CAS  PubMed  Google Scholar 

  24. Asano S, Kato E, Yamauchi M et al (1966) The mechanism of acidosis caused by infusion of saline solution. Lancet 1:1245–1246

    Article  CAS  PubMed  Google Scholar 

  25. Goodkin DA, Raja RM, Saven A (1990) Dilutional acidosis. South Med J 83:354–355

    Article  CAS  PubMed  Google Scholar 

  26. Jaber BL, Madias NE (1997) Marked dilutional acidosis complicating management of right ventricular myocardial infarction. Am J Kidney Dis 30:561–567

    Article  CAS  PubMed  Google Scholar 

  27. Garella S, Chang BS, Kahn SI (1975) Dilution acidosis and contraction alkalosis: review of a concept. Kidney Int 8:279–283

    Article  CAS  PubMed  Google Scholar 

  28. Kellum JA (2000) Determinants of blood pH in health and disease. Crit Care 4:6–14

    Article  CAS  PubMed  Google Scholar 

  29. Morgan TJ (2005) The meaning of acid-base abnormalities in the intensive care unit: part III—effects of fluid administration. Crit Care 9:204–211

    Article  PubMed  Google Scholar 

  30. Kaplan LJ (2005) It’s all in the charge. Crit Care Med 33:680–681

    Article  PubMed  Google Scholar 

  31. Alston RP, Cormack L, Collinson C (2004) Metabolic acidosis developing during cardiopulmonary bypass is related to a decrease in strong ion difference. Perfusion 19:145–152

    Article  PubMed  Google Scholar 

  32. Fall PJ, Szerlip HM (2005) Lactic acidosis: from sour milk to septic shock. J Intensive Care Med 20:255–271

    Article  PubMed  Google Scholar 

  33. Watson PD (2001) Acid-Base-Calculator: AcidBasics II. Accessed 5 December 2001. http://ppn.med.sc.edu/watson/Acidbase/Acidbase.htm

  34. Butler JN (1998) Ionic equilibrium—solubility and pH calculations. Wiley, New York

    Google Scholar 

  35. Figge J, Rossing TH, Fencl V (1991) The role of serum proteins in acid-base equilibria. J Lab Clin Med 117:453–467

    CAS  PubMed  Google Scholar 

  36. Anstey CM (2005) Comparison of three strong ion models used for quantifying the acid-base status of human plasma with special emphasis on the plasma weak acids. J Appl Physiol 98:2119–2125

    Article  CAS  PubMed  Google Scholar 

  37. Wooten EW (1999) Analytic calculation of physiological acid-base parameters in plasma. J Appl Physiol 86:326–334

    CAS  PubMed  Google Scholar 

  38. Lang W, Zander R (2005) Prediction of dilutional acidosis based on the revised classical dilution concept for bicarbonate. J Appl Physiol 98:62–71

    Article  PubMed  Google Scholar 

  39. Morgan TJ, Venkatesh B, Hall J (2002) Crystalloid strong ion difference determines metabolic acid-base change during in vitro hemodilution. Crit Care Med 30:157–160

    Article  CAS  PubMed  Google Scholar 

  40. Zander R (2006) Bicarbonate and dilutional acidosis. In: Fluid management, Biblomed—Medizinische Verlagsgesellschaft, Melsungen, pp 13–14

  41. Doberer D, Funk GC, Kneidinger N, Lindner G, Kneussl M, Schneeweiss B (2006) Base excess a universal parameter for quantification of several metabolic and respiratory acid-base disorders. Abstract, ERS Munich, Germany

  42. Fencl V, Jabor A, Kazda A, Figge J (2000) Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 162:2246–2251

    CAS  PubMed  Google Scholar 

  43. Rehm M, Conzen PF, Peter K, Finsterer U (2004) The Stewart model. “Modern” approach to the interpretation of the acid-base metabolism. Anaesthesist 53:347–357

    Article  CAS  PubMed  Google Scholar 

  44. Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This work is dedicated to deceased Professor Roland Schmid who was our “chemical advisor” since the beginning of our acid-base scientific work. The authors would like to thank Philip D. Watson for providing his computer program “Acid-Basics II”, with which the acid-base simulations were confirmed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Doberer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 162 kb)

Supplementary tables (DOC 213 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doberer, D., Funk, GC., Kirchner, K. et al. A critique of Stewart’s approach: the chemical mechanism of dilutional acidosis. Intensive Care Med 35, 2173–2180 (2009). https://doi.org/10.1007/s00134-009-1528-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-009-1528-y

Keywords

Navigation