Skip to main content
Log in

Biomechanik der interspinösen Platzhalter

Biomechanics of interspinous spacers

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Interspinöse Platzhalter werden häufig implantiert, um eine lumbale Spinalkanalstenose oder eine Gelenkfacettenarthrose zu behandeln. Ziel ist es; mit deren Hilfe die Extension in den betroffenen Segmenten einzuschränken, die Gelenkfacetten zu entlasten, die Höhe des Foramens wiederherzustellen, gleichzeitig aber die Bewegung im physiologischen Bereich zu erhalten. In dieser Arbeit werden mehrere In-vitro-Studien zusammengefasst, in denen die vier verschiedenen interspinösen Implantate – Coflex™, DIAM™, Wallis und X-STOP – bezüglich der Primärstabilität, des Bandscheibendrucks und der Stabilität nach zyklischer Belastung untersucht wurden.

24 humane lumbale Wirbelsäulensegmente wurden in vier gleiche Gruppen eingeteilt und in Flexion/Extension, Seitneigung und axialer Rotation getestet: jeweils intakt, nach Dekompression mit einer Hemifacettektomie und mit Implantat. Die Implantation hatte bei allen vier Typen ähnliche biomechanische Effekte. In Extension konnten die Implantate die Instabilität aufgrund des Defekts überkompensieren und reduzierten den Bewegungsumfang auf ca. 50% des intakten. Im Vergleich dazu blieb der Bewegungsumfang in Flexion, Seitneigung und axialer Rotation bei Werten des Defektzustands nahezu unverändert. Die Charakteristik des Bandscheibendruckes scheint für alle Implantate vergleichbar. In Flexion, Seitneigung und axialer Rotation erlaubt die Behandlung einen annähernd physiologischen Druck, während in Extension die Bandscheibe deutlich entlastet wird. 50.000 Lastzyklen vergrößerten den Bewegungsumfang um bis zu 20%, blieb in Extension aber immer noch unter den Werten des intakten Zustands.

Abstract

Interspinous spacers are commonly used to treat lumbar spinal stenosis or facet joint arthritis. The aims of implanting interspinous devices are to unload the facet joints, restore foraminal height, and provide stability especially in extension but still allow motion. This paper summarizes several in vitro studies, which compared four different interspinous implants – Coflex™, Wallis, DIAM™, and X-STOP – in terms of their three-dimensional primary stability, the intradiscal pressure, and stability after cyclic loading. 24 human lumbar spine specimens were divided into four equal groups and tested with pure moments in flexion/extension, lateral bending, and axial rotation: intact, after decompression with hemifacetectomy, and after implantation.

Implantation had similar biomechanical effects with all four implants. In extension, they overcompensated the instability caused by the defect and restricted extension to about 50% compared to the intact state. In contrast, in flexion, lateral bending, and axial rotation the values of the range of motion stayed similar compared to the defective state. Intradiscal pressure after implantation was similar to that of the intact specimens in flexion, lateral bending, and axial rotation but much smaller during extension; 50,000 load cycles increased the range of motion in all motion planes by no more than 20%, but in extension motion this was still less than in the intact state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Amundsen T, Weber H, Nordal HJ et al (2000) Lumbar spinal stenosis: conservative or surgical management?: A prospective 10-year study. Spine 25:1424–1435

    Article  CAS  PubMed  Google Scholar 

  2. Fujiwara A, Tamai K, An HS et al (2000) The relationship between disc degeneration, facet joint osteoarthritis, and stability of the degenerative lumbar spine. J Spinal Disord Tech 13:444–450

    Article  CAS  Google Scholar 

  3. Kettler A, Drumm J, Heuer F et al (2008) Can a modified interspinous spacer prevent instability in axial rotation and lateral bending? A biomechanical in vitro study resulting in a new idea. Clin Biomech 23:242–247

    Article  CAS  Google Scholar 

  4. Kettler A, Liakos L, Haegele B, Wilke HJ (2007) Are the spines of calf, pig and sheep suitable models for pre-clinical implant tests? Eur Spine J 16:2186–2192

    Article  CAS  PubMed  Google Scholar 

  5. Lafage V, Gangnet N, Senegas J et al (2007) New interspinous implant evaluation using an in vitro biomechanical study combined with a finite-element analysis. Spine 32:1706–1713

    Article  PubMed  Google Scholar 

  6. Lindsey DP, Swanson KE, Fuchs P et al (2003) The effects of an interspinous implant on the kinematics of the instrumented and adjacent levels in the lumbar spine. Spine 28:2192–2197

    Article  PubMed  Google Scholar 

  7. Minns RJ, Walsh WK (1997) Preliminary design and experimental studies of a novel soft implant for correcting sagittal plane instability in the lumbar spine. Spine 22:1819–1825

    Article  CAS  PubMed  Google Scholar 

  8. Phillips FM, Voronov LI, Gaitanis IN et al (2006) Biomechanics of posterior dynamic stabilizing device (DIAM) after facetectomy and discectomy. Spine J 6:714–722

    Article  PubMed  Google Scholar 

  9. Rohlmann A, Zander T, Burra NK, Bergmann G (2005) Effect of an interspinous implant on loads in the lumbar spine. Biomed Tech 50:343–347

    Article  CAS  Google Scholar 

  10. Schmoelz W, Huber JF, Nydegger T et al (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423

    CAS  PubMed  Google Scholar 

  11. Simotas AC, Dorey FJ, Hansraj KK, Cammisa F Jr (2000) Nonoperative treatment for lumbar spinal stenosis. Clinical and outcome results and a 3-year survivorship analysis. Spine 25:197–203

    Article  CAS  PubMed  Google Scholar 

  12. Swanson KE, Lindsey DP, Hsu KY et al (2003) The effects of an interspinous implant on intervertebral disc pressures. Spine 28:26–32

    Article  PubMed  Google Scholar 

  13. Trautwein FT, Lowery GL, Wharton ND et al (2010) Determination of the in vivo posterior loading environment of the Coflex interlaminar-interspinous implant. Spine J 10(3):244–251

    Article  PubMed  Google Scholar 

  14. Turner JA, Ersek M, Herron L, Deyo R (1992) Surgery for lumbar spinal stenosis. Attempted meta-analysis of the literature. Spine 17:1–8

    Article  CAS  PubMed  Google Scholar 

  15. Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97

    Article  CAS  PubMed  Google Scholar 

  16. Wilke HJ, Drumm J, Haussler K et al (2008) Biomechanical effect of different lumbar interspinous implants on flexibility and intradiscal pressure. Eur Spine J 17:1049–1056

    Article  PubMed  Google Scholar 

  17. Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular-deformation rate, and moisture condition. Anat Rec 251:15–19

    Article  CAS  PubMed  Google Scholar 

  18. Wilke HJ, Mehnert U, Claes LE et al (2006) Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading. Spine 31:2934–2941

    Article  PubMed  Google Scholar 

  19. Wilke HJ, Neef P, Caimi M et al (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24:755–762

    Article  CAS  PubMed  Google Scholar 

  20. Wilke HJ, Rohlmann A, Neller S et al (2001) Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator. Spine 26:636–642

    Article  CAS  PubMed  Google Scholar 

  21. Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7:148–154

    Article  CAS  PubMed  Google Scholar 

  22. Wiseman CM, Lindsey DP, Fredrick AD, Yerby SA (2005) The effect of an interspinous process implant on facet loading during extension. Spine 30:903–907

    Article  PubMed  Google Scholar 

  23. Zindrick MR, Wiltse LL, Widell EH et al (1986) A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res 99–112

Download references

Interessenskonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Diese Studie wurde zwar von der Firma ParadigmSpine in Wurmlingen finanziert, der Autor hält gelegentlich Vorträge für ParadigmSpine, die Präsentation des Themas ist aber unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-J Wilke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilke, HJ., Drumm, J., Häussler, K. et al. Biomechanik der interspinösen Platzhalter. Orthopäde 39, 565–572 (2010). https://doi.org/10.1007/s00132-009-1587-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-009-1587-3

Schlüsselwörter

Keywords

Navigation