Skip to main content
Log in

Eiswassertest und Bladder-cooling-Reflex

Physiologie, Pathophysiologie und klinische Bedeutung

The ice water test and bladder cooling reflex

Physiology, pathophysiology and clinical importance

  • Übersichten
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Urodynamische Messungen werden zur Diagnostik und Verlaufskontrolle von Funktionsstörungen des unteren Harntraktes eingesetzt. Provokationstests dienen dabei zur Demaskierung von Funktionsstörungen, die in der Standardzystometrie nicht nachweisbar sind. Der Eiswassertest ist ein Provokationstest, um eine neurogene Ursache für eine Blasenüberaktivität nachzuweisen.

Ziel

Darstellung der Entwicklung und Bedeutung des Eiswassertests vor dem Hintergrund des aktuellen Wissens über die Physiologie und Pathophysiologie der Funktion des unteren Harntraktes.

Material und Methode

Es erfolgte im April 2015 eine systematische Literaturrecherche in den Datenbanken Pubmed und ScienceDirect. Relevante Literatur ohne Jahresbegrenzung oder Sprachlimitierung wurde in den Datenbanken selektiert. Folgende Schlagwörter und „medical subject heading“ wurden zur Literaturrecherche verwendet: „ice water test“, „bladder cooling reflex“, „micturition“ und „neuronal control“. Übersichtsartikel und Literaturverzeichnisse wurden verwendet, um weitere relevante Literatur zu identifizieren.

Ergebnisse

Der Eiswassertest erfolgt durch rasche Instillation von 4–8 °C kalter Flüssigkeit in die Harnblase. Sofern eine unwillkürliche Detrusorkontraktion auftritt, wird er als positiv gewertet. Pathophysiologisch werden über Kälterezeptoren im Urothel afferente C-Fasern aktiviert, die den sog. Bladder-cooling-Reflex auslösen. Der Reflex wird jedoch beim Gesunden ab spätestens dem 5. Lebensjahr durch das zentrale Nervensystem inhibiert.

Diskussion

Der Eiswassertest ist ein Provokationstest zur Demaskierung suprasakraler Nervenschädigungen als Auslöser einer Detrusorhyperaktivität. Bei einer Detrusorakontraktilität hingegen ist der Eiswassertest stets negativ. Er kann hierbei nicht zur Unterscheidung einer neurogenen oder muskulären Ursache herangezogen werden. Darüber hinaus fällt der Test zudem bei einem geringen Prozentsatz bei nicht-neurologischen Blasenfunktionsstörungen positiv aus, so z. B. bei der prostatabedingten Blasenauslassobstruktion oder der idiopathisch überaktiven Blase. Die Ursache hierfür ist nicht abschließend geklärt, kann aber möglicherweise als erstes Anzeichen einer anderweitig asymptomatischen neurologischen Erkrankung gewertet werden.

Schlussfolgerung

Aufgrund der einfachen Durchführung bietet der Eiswassertest eine einfache und schnelle Möglichkeit neurologische Detrusorhyperaktivitäten im Anschluss an die Standardzystometrie zu identifizieren.

Abstract

Background

Urodynamic studies are utilised for identification and follow-up of functional disorders of the lower urinary tract. Provocation tests are used to determine disorders which could not be revealed in standard cystometry. The ice water test is a simple test to identify neurogenic bladder dysfunction and to screen the integrity of the upper motor neuron in neurogenic bladder dysfunction.

Objectives

Development and significance of the ice water test is presented in this review against the background of physiology and pathophysiology of the lower urinary tract.

Materials and methods

A systematic review of PubMed and ScienceDirect databases was performed in April 2015. No language or time limitation was applied. The following key words and Medical Subject Heading terms were used to identify relevant studies: “ice water test”, “bladder cooling reflex”, “micturition” and “neuronal control”. Review articles and bibliographies of other relevant studies identified were hand searched to find additional studies.

Results

The ice water test is performed by rapid instillation of 4–8 °C cold fluid into the urinary bladder. Hereby, afferent C fibers are activated by cold receptors in the bladder leading to the bladder cooling reflex. It is a spinal reflex which causes an involuntarily contraction of the urinary bladder. The test is normally positive in young infants during the first 4 years of life and become negative with maturation of the central nervous system afterwards by inhibition of the reflex. The damage of the upper motor neuron causes the recurrence of the reflex in the adulthood and indicates spinal and cerebral lesions.

Discussion

The ice water test is utilised to identify lesions of the upper motor neuron. However, in the case of detrusor acontractility the test will always be negative and can not be utilized to distinguish between neurogenic or muscular causes. Furthermore, the test is also positive in a small percentage of cases of non-neurogenic diseases, e.g. in prostate-related bladder outlet obstruction or idiopathic overactive bladder. Although no clear explanation exists, a positive ice water test could be the first sign of an otherwise asymptomatic neurological disease.

Conclusions

Due to the simple procedure, the ice water test is a reliable possibility to identify neurologic bladder hyperactivity subsequent to standard cystometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Abbreviations

CGRP:

„calcitonin gene-related peptid“

CMR1:

„cold and menthol receptor 1“

NO:

Stickstoffmonoxid

TRP:

„transient receptor potential“

TRPM8:

„transient receptor potential subfamily M member 8“

Literatur

  1. Al-Hayek S, Abrams P (2010) The 50-year history of the ice water test in urology. J Urol 183:1686–1692

    Article  PubMed  Google Scholar 

  2. Andersson KE (2002) Bladder activation: afferent mechanisms. Urology 59:43–50

    Article  PubMed  Google Scholar 

  3. Andersson KE, Arner A (2004) Urinary bladder contraction and relaxation: physiology and pathophysiology. Physiol Rev 84:935–986

    Article  CAS  PubMed  Google Scholar 

  4. Andersson KE, Yoshida M (2003) Antimuscarinics and the overactive detrusor – which is the main mechanism of action? Eur Urol 43:1–5

    Article  CAS  PubMed  Google Scholar 

  5. Blok BF (2002) Central pathways controlling micturition and urinary continence. Urology 59:13–17

    Article  PubMed  Google Scholar 

  6. Bors EH, Blinn KA (1957) Spinal reflex activity from the vesical mucosa in paraplegic patients. AMA Arch Neurol Psychiastry 78:339–354

    Article  CAS  Google Scholar 

  7. Chai TC, Gray ML, Steers WD (1998) The incidence of a positive ice water test in bladder outlet obstructed patients: evidence for bladder neural plasticity. J Urol 160:34–38

    Article  CAS  PubMed  Google Scholar 

  8. Chancellor MB, Lavelle J, Ozawa H et al (1998) Ice-water test in the urodynamic evaluation of spinal cord injured patients. Tech Urol 4:87–91

    CAS  PubMed  Google Scholar 

  9. Chess-Williams R, Chapple CR, Yamanishi T et al (2001) The minor population of M3-receptors mediate contraction of human detrusor muscle in vitro. J Auton Pharmacol 21:243–248

    Article  CAS  PubMed  Google Scholar 

  10. De Groat WC (2004) The urothelium in overactive bladder: passive bystander or active participant? Urology 64:7–11

    Article  Google Scholar 

  11. Fall M, Geirsson G (1996) Positive ice-water test: a predictor of neurological disease? World J Urol 14(Suppl 1):51–54

    Article  Google Scholar 

  12. Fall M, Lindstrom S, Mazieres L (1990) A bladder-to-bladder cooling reflex in the cat. J Physiol 427:281–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fowler CJ (2002) Bladder afferents and their role in the overactive bladder. Urology 59:37–42

    Article  PubMed  Google Scholar 

  14. Fowler CJ, Griffiths D, De Groat WC (2008) The neural control of micturition. Nat Rev Neurosci 9:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gabella G, Davis C (1998) Distribution of afferent axons in the bladder of rats. J Neurocytol 27:141–155

    Article  CAS  PubMed  Google Scholar 

  16. Gardiner JC, Kirkup AJ, Curry J et al (2014) The role of TRPM8 in the Guinea-pig bladder-cooling reflex investigated using a novel TRPM8 antagonist. Eur J Pharmacol 740:398–409

    Article  CAS  PubMed  Google Scholar 

  17. Geirsson G (1993) Evidence of cold receptors in the human bladder: effect of menthol on the bladder cooling reflex. J Urol 150:427–430

    CAS  PubMed  Google Scholar 

  18. Geirsson G, Fall M, Lindstrom S (1993) The ice-water test – a simple and valuable supplement to routine cystometry. Br J Urol 71:681–685

    Article  CAS  PubMed  Google Scholar 

  19. Geirsson G, Lindstrom S, Fall M (1999) The bladder cooling reflex and the use of cooling as stimulus to the lower urinary tract. J Urol 162:1890–1896

    Article  CAS  PubMed  Google Scholar 

  20. Geirsson G, Lindstrom S, Fall M (1993) The bladder cooling reflex in man – characteristics and sensitivity to temperature. Br J Urol 71:675–680

    Article  CAS  PubMed  Google Scholar 

  21. Geirsson G, Lindstrom S, Fall M (1994) Pressure, volume and infusion speed criteria for the ice-water test. Br J Urol 73:498–503

    Article  CAS  PubMed  Google Scholar 

  22. Geirsson G, Lindstrom S, Fall M et al (1994) Positive bladder cooling test in neurologically normal young children. J Urol 151:446–448

    CAS  PubMed  Google Scholar 

  23. Guo C, Yang B, Gu W et al (2013) Intravesical resiniferatoxin for the treatment of storage lower urinary tract symptoms in patients with either interstitial cystitis or detrusor overactivity: a meta-analysis. PLoS One 8:e82591

    Article  PubMed  PubMed Central  Google Scholar 

  24. Habler HJ, Janig W, Koltzenburg M (1990) Activation of unmyelinated afferent fibres by mechanical stimuli and inflammation of the urinary bladder in the cat. J Physiol 425:545–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hellstrom PA, Tammela TL, Kontturi MJ et al (1991) The bladder cooling test for urodynamic assessment: analysis of 400 examinations. Br J Urol 67:275–279

    Article  CAS  PubMed  Google Scholar 

  26. Holcomb GW Jr (1994) Positive bladder cooling test in neurologically normal young children. J Urol 151:446–448

    Google Scholar 

  27. Ishigooka M, Hashimoto T, Hayami S et al (1997) Ice water test in patients with overactive bladder due to cerebrovascular accidents and bladder outlet obstruction. Urol Int 58:84–87

    Article  CAS  PubMed  Google Scholar 

  28. Ismael SS, Epstein T, Bayle B et al (2000) Bladder cooling reflex in patients with multiple sclerosis. J Urol 164:1280–1284

    Article  CAS  PubMed  Google Scholar 

  29. Janig W, Morrison JF (1986) Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. Prog Brain Res 67:87–114

    Article  CAS  PubMed  Google Scholar 

  30. Kinder MV, Bastiaanssen EH, Janknegt RA et al (1999) The neuronal control of the lower urinary tract: a model of architecture and control mechanisms. Arch Physiol Biochem 107:203–222

    Article  CAS  PubMed  Google Scholar 

  31. Lindstrom S, Mazieres L (1991) Effect of menthol on the bladder cooling reflex in the cat. Acta Physiol Scand 141:1–10

    Article  CAS  PubMed  Google Scholar 

  32. Lindstrom S, Mazieres L, Jiang CH (2004) Inhibition of the bladder cooling reflex in the awake state: an experimental study in the cat. J Urol 172:2051–2053

    Article  PubMed  Google Scholar 

  33. Mazieres L, Jiang C, Lindstrom S (1998) The C fibre reflex of the cat urinary bladder. J Physiol 513(Pt 2):531–541

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mckemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    Article  CAS  PubMed  Google Scholar 

  35. Mukerji G, Waters J, Chessell IP et al (2006) Pain during ice water test distinguishes clinical bladder hypersensitivity from overactivity disorders. BMC Urol 6:31

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mukerji G, Yiangou Y, Corcoran SL et al (2006) Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol 6:6

    Article  PubMed  PubMed Central  Google Scholar 

  37. Park JM, Bloom DA, Mcguire EJ (1997) The guarding reflex revisited. Br J Urol 80:940–945

    Article  CAS  PubMed  Google Scholar 

  38. Peier AM, Moqrich A, Hergarden AC et al (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  CAS  PubMed  Google Scholar 

  39. Petersen T, Chandiramani V, Fowler CJ (1997) The ice-water test in detrusor hyper-reflexia and bladder instability. Br J Urol 79:163–167

    Article  CAS  PubMed  Google Scholar 

  40. Raz S (1973) Objective assessment of bladder response in ice water test. J Urol 109:603–604

    CAS  PubMed  Google Scholar 

  41. Reitz A, Haferkamp A, Hohenfellner M (2005) Afferent pathways arising from the lower urinary tract. Physiology, pathophysiology, and clinical implications. Urologe A 44:1452–1457

    Article  CAS  PubMed  Google Scholar 

  42. Reitz A, Seif C, Kirschner-Hermanns R et al (2013) Urodynamic testing of the lower urinary tract. Urologe A 52:265–274 (quiz 275–266)

    Article  CAS  PubMed  Google Scholar 

  43. Ronzoni G, Menchinelli P, Manca A et al (1997) The ice-water test in the diagnosis and treatment of the neurogenic bladder. Br J Urol 79:698–701

    Article  CAS  PubMed  Google Scholar 

  44. Stein RJ, Santos S, Nagatomi J et al (2004) Cool (TRPM8) and hot (TRPV1) receptors in the bladder and male genital tract. J Urol 172:1175–1178

    Article  CAS  PubMed  Google Scholar 

  45. Tsukimi Y, Mizuyachi K, Yamasaki T et al (2005) Cold response of the bladder in guinea pig: involvement of transient receptor potential channel, TRPM8. Urology 65:406–410

    Article  PubMed  Google Scholar 

  46. Uemura E, Fletcher TF, Dirks VA et al (1973) Distribution of sacral afferent axons in cat urinary bladder. Am J Anat 136:305–313

    Article  CAS  PubMed  Google Scholar 

  47. Uvin P, Franken J, Pinto S et al (2015) Essential role of transient receptor potential M8 (TRPM8) in a model of acute cold-induced urinary urgency. Eur Urol 68(4):655–661

    Article  CAS  PubMed  Google Scholar 

  48. Vahabi B, Parsons BA, Doran O et al (2013) TRPM8 agonists modulate contraction of the pig urinary bladder. Can J Physiol Pharmacol 91:503–509

    Article  CAS  PubMed  Google Scholar 

  49. Van Meel TD, De Wachter S, Wyndaele JJ (2007) Repeated ice water tests and electrical perception threshold determination to detect a neurologic cause of detrusor overactivity. Urology 70:772–776

    Article  Google Scholar 

  50. Wang TG, Hsu TC, Wang YH et al (1994) Clinical application of the ice water test in evaluation of neurogenic bladder dysfunction. J Formos Med Assoc 93(Suppl 2):115–119

    Google Scholar 

  51. Winchester WJ, Gore K, Glatt S et al (2014) Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans. J Pharmacol Exp Ther 351:259–269

    Article  PubMed  Google Scholar 

  52. Wyndaele JJ, De Wachter S (2008) The sensory bladder (1): an update on the different sensations described in the lower urinary tract and the physiological mechanisms behind them. Neurourol Urodyn 27:274–278

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. T. Hüsch, T. Neuerburg, A. Reitz und A. Haferkamp geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Hüsch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hüsch, T., Neuerburg, T., Reitz, A. et al. Eiswassertest und Bladder-cooling-Reflex. Urologe 55, 499–505 (2016). https://doi.org/10.1007/s00120-015-3981-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-015-3981-2

Schlüsselwörter

Keywords

Navigation