Skip to main content
Log in

„Default-mode“-Netzwerk des Gehirns

Neurobiologie und klinische Bedeutung

Default mode network of the brain

Neurobiology and clinical significance

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Der Ruhezustand des menschlichen Gehirns ist durch die intrinsische Aktivität des „Default-mode“-Netzwerks (DMN), das sowohl kortikale Mittellinienstrukturen als auch laterale parietale und temporale Anteile umfasst, geprägt. Dieses System ist während des selbstorientierten Denkens, wie z. B. im Ruhezustand, aktiv, während eines weltorientierten Bewusstseinszustands, wie z. B. während externaler Aufmerksamkeit und spezifischer kognitiver Aufgaben, jedoch in seiner Aktivität gemindert. Ausgehend von der historischen und methodischen Entwicklung des DMN-Modells beschreibt der vorliegende Übersichtsbeitrag zunächst die funktionelle Anatomie und potenzielle Funktionen dieses neuralen Systems. Im Anschluss werden, basierend auf der aktuellen Datenlage, die klinischen Implikationen einer gestörten Netzwerkstruktur beleuchtet und die Rolle des DMN bei verschiedenen psychischen Störungen aufgezeigt.

Summary

The resting state of the human brain is intrinsically organized by the so-called default mode network (DMN) which comprises cortical midline structure as well as lateral parietal and temporal areas. The activity of this system increases during self-oriented thinking, e.g. during a resting state but decreases during externally oriented attention and specific cognitive tasks. This review article provides a historical and methodological outline of the DMN model and describes its functional anatomy and putative functions. Based on the empirical literature the clinical implications of alterations of the DMN architecture and its role in various mental disorders are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  1. Andrews-Hanna JR, Snyder AZ, Vincent JL et al (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935

    PubMed  CAS  Google Scholar 

  2. Assaf M, Jagannathan K, Calhoun VD et al (2010) Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 53:247–256

    PubMed  Google Scholar 

  3. Baliki MN, Geha PY, Apkarian AV et al (2008) Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics. J Neurosci 28:1398–1403

    PubMed  CAS  Google Scholar 

  4. Bar M (2009) The proactive brain: memory for predictions. Philos Trans R Soc Lond B Biol Sci 364:1235–1243

    PubMed  Google Scholar 

  5. Benson DF, Kuhl DE, Hawkins RA et al (1983) The fluorodeoxyglucose 18F scan in Alzheimer’s disease and multi-infarct dementia. Arch Neurol 40:711–714

    PubMed  CAS  Google Scholar 

  6. Biswal B, Yetkin FZ, Haughton VM et al (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    PubMed  CAS  Google Scholar 

  7. Bluhm RL, Miller J, Lanius RA et al (2007) Spontaneous low-frequency fluctuations in the BOLD signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 33:1004–1012

    PubMed  Google Scholar 

  8. Bluhm RL, Williamson PC, Osuch EA et al (2009) Alterations in default network connectivity in posttraumatic stress disorder related to early-life trauma. J Psychiatry Neurosci 34:187–194

    PubMed  Google Scholar 

  9. Broyd SJ, Demanuele C, Debener S et al (2009) Default-mode brain dysfunction in mental disorders: a systematic review. Neurosci Biobehav Rev 33:279–296

    PubMed  Google Scholar 

  10. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38

    PubMed  Google Scholar 

  11. Buckner RL, Snyder AZ, Shannon BJ et al (2005) Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci 25:7709–7717

    PubMed  CAS  Google Scholar 

  12. Buzsaki G (2010) Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68:362–385

    PubMed  CAS  Google Scholar 

  13. Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29:828–838

    PubMed  Google Scholar 

  14. Caspi A, Moffitt TE, Cannon M et al (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry 57:1117–1127

    PubMed  CAS  Google Scholar 

  15. Castellanos FX, Margulies DS, Kelly C et al (2008) Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 63:332–337

    PubMed  Google Scholar 

  16. Cherkassky VL, Kana RK, Keller TA et al (2006) Functional connectivity in a baseline resting-state network in autism. Neuroreport 17:1687–1690

    PubMed  Google Scholar 

  17. Church JA, Fair DA, Dosenbach NU et al (2009) Control networks in paediatric Tourette syndrome show immature and anomalous patterns of functional connectivity. Brain 132:225–238

    PubMed  Google Scholar 

  18. Ciftci K (2011) Minimum spanning tree reflects the alterations of the default mode network during Alzheimer’s disease. Ann Biomed Eng 39:1493–1504

    PubMed  Google Scholar 

  19. Cirrito JR, Yamada KA, Finn MB et al (2005) Synaptic activity regulates interstitial fluid amyloid-beta levels in vivo. Neuron 48:913–922

    PubMed  CAS  Google Scholar 

  20. Cohen MX (2011) It’s about time. Front Hum Neurosci 5:2

    PubMed  Google Scholar 

  21. Craddock N, Owen MJ, O’Donovan MC (2006) The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons. Mol Psychiatry 11:446–458

    PubMed  CAS  Google Scholar 

  22. D’Argembeau A, Collette F, Van Der Linden M et al (2005) Self-referential reflective activity and its relationship with rest: a PET study. Neuroimage 25:616–624

    Google Scholar 

  23. Damoiseaux JS, Beckmann CF, Arigita EJ et al (2008) Reduced resting-state brain activity in the „default network“ in normal aging. Cereb Cortex 18:1856–1864

    PubMed  CAS  Google Scholar 

  24. Daniels JK, Mcfarlane AC, Bluhm RL et al (2010) Switching between executive and default mode networks in posttraumatic stress disorder: alterations in functional connectivity. J Psychiatry Neurosci 35:258–266

    PubMed  Google Scholar 

  25. Dosenbach NU, Nardos B, Cohen AL et al (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361

    PubMed  CAS  Google Scholar 

  26. Eichele T, Debener S, Calhoun VD et al (2008) Prediction of human errors by maladaptive changes in event-related brain networks. Proc Natl Acad Sci U S A 105:6173–6178

    PubMed  CAS  Google Scholar 

  27. Elliott R, Dolan RJ, Frith CD (2000) Dissociable functions in the medial and lateral orbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex 10:308–317

    PubMed  CAS  Google Scholar 

  28. Fair DA, Cohen AL, Dosenbach NU et al (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci U S A 105:4028–4032

    PubMed  CAS  Google Scholar 

  29. Fair DA, Cohen AL, Power JD et al (2009) Functional brain networks develop from a „local to distributed“ organization. PLoS Comput Biol 5:e1000381

    PubMed  Google Scholar 

  30. Filippini N, Macintosh BJ, Hough MG et al (2009) Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proc Natl Acad Sci U S A 106:7209–7214

    PubMed  CAS  Google Scholar 

  31. Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    PubMed  CAS  Google Scholar 

  32. Fransson P, Skiold B, Engstrom M et al (2009) Spontaneous brain activity in the newborn brain during natural sleep – an fMRI study in infants born at full term. Pediatr Res 66:301–305

    PubMed  Google Scholar 

  33. Fransson P, Skiold B, Horsch S et al (2007) Resting-state networks in the infant brain. Proc Natl Acad Sci U S A 104:15531–15536

    PubMed  CAS  Google Scholar 

  34. Gao W, Zhu H, Giovanello KS et al (2009) Evidence on the emergence of the brain’s default network from 2-week-old to 2-year-old healthy pediatric subjects. Proc Natl Acad Sci U S A 106:6790–6795

    PubMed  CAS  Google Scholar 

  35. Garrity AG, Pearlson GD, Mckiernan K et al (2007) Aberrant „default mode“ functional connectivity in schizophrenia. Am J Psychiatry 164:450–457

    PubMed  Google Scholar 

  36. Gentili C, Ricciardi E, Gobbini MI et al (2009) Beyond amygdala: default mode network activity differs between patients with social phobia and healthy controls. Brain Res Bull 79:409–413

    PubMed  Google Scholar 

  37. Greicius MD, Flores BH, Menon V et al (2007) Resting-state functional connectivity in major depression: abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry 62:429–437

    PubMed  Google Scholar 

  38. Greicius MD, Krasnow B, Reiss AL et al (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258

    PubMed  CAS  Google Scholar 

  39. Greicius MD, Srivastava G, Reiss AL et al (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642

    PubMed  CAS  Google Scholar 

  40. Greicius MD, Supekar K, Menon V et al (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19:72–78

    PubMed  Google Scholar 

  41. Grimm S, Boesiger P, Beck J et al (2009) Altered negative BOLD responses in the default-mode network during emotion processing in depressed subjects. Neuropsychopharmacology 34:932–843

    PubMed  Google Scholar 

  42. Grimm S, Ernst J, Boesiger P et al (2011) Reduced negative BOLD responses in the default-mode network and increased self-focus in depression. World J Biol Psychiatry, doi:10.3109/15622975.2010.545145

  43. Gusnard DA, Akbudak E, Shulman GL et al (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A 98:4259–4264

    PubMed  CAS  Google Scholar 

  44. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694

    PubMed  CAS  Google Scholar 

  45. Halko MA, Eldaief MC, Horvath JC et al (2010) Combining transcranial magnetic stimulation and FMRI to examine the default mode network. J Vis Exp, doi 10.3791/2271

  46. Harrison BJ, Yucel M, Pujol J et al (2007) Task-induced deactivation of midline cortical regions in schizophrenia assessed with fMRI. Schizophr Res 91:82–86

    PubMed  Google Scholar 

  47. Herholz K (1995) FDG PET and differential diagnosis of dementia. Alzheimer Dis Assoc Disord 9:6–16

    PubMed  CAS  Google Scholar 

  48. Ingvar DH (1979) Hyperfrontal distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurol Scand 60:12–25

    PubMed  CAS  Google Scholar 

  49. Ingvar DH (1985) Memory of the future: an essay on the temporal organization of conscious awareness. Hum Neurobiol 4:127–136

    PubMed  CAS  Google Scholar 

  50. Kelly AM, Di Martino A, Uddin LQ et al (2009) Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex 19:640–657

    PubMed  Google Scholar 

  51. Kennedy DP, Courchesne E (2008) The intrinsic functional organization of the brain is altered in autism. Neuroimage 39:1877–1885

    PubMed  Google Scholar 

  52. Koch W, Teipel S, Mueller S et al (2010) Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease. Neurobiol Aging, doi:10.1016/j.neurobiolaging.2010.04.013

  53. Kumar A, Schapiro MB, Grady C et al (1991) High-resolution PET studies in Alzheimer’s disease. Neuropsychopharmacology 4:35–46

    PubMed  CAS  Google Scholar 

  54. Lanius RA, Bluhm RL, Coupland NJ et al (2010) Default mode network connectivity as a predictor of post-traumatic stress disorder symptom severity in acutely traumatized subjects. Acta Psychiatr Scand 121:33–40

    PubMed  CAS  Google Scholar 

  55. Liang M, Zhou Y, Jiang T et al (2006) Widespread functional disconnectivity in schizophrenia with resting-state functional magnetic resonance imaging. Neuroreport 17:209–213

    PubMed  Google Scholar 

  56. Liao W, Chen H, Feng Y et al (2010) Selective aberrant functional connectivity of resting state networks in social anxiety disorder. Neuroimage 52:1549–1558

    PubMed  Google Scholar 

  57. Liddle EB, Hollis C, Batty MJ et al (2010) Task-related default mode network modulation and inhibitory control in ADHD: effects of motivation and methylphenidate. J Child Psychol Psychiatry, doi 10.1111/j.1469-7610.2010.02333.x

  58. Lind J, Persson J, Ingvar M et al (2006) Reduced functional brain activity response in cognitively intact apolipoprotein E epsilon4 carriers. Brain 129:1240–1248

    PubMed  Google Scholar 

  59. Lorenzi M, Beltramello A, Mercuri NB et al (2011) Effect of memantine on resting state default mode network activity in Alzheimer’s disease. Drugs Aging 28:205–217

    PubMed  CAS  Google Scholar 

  60. Lou HC, Luber B, Stanford A et al (2010) Self-specific processing in the default network: a single-pulse TMS study. Exp Brain Res 207:27–38

    PubMed  Google Scholar 

  61. Lustig C, Snyder AZ, Bhakta M et al (2003) Functional deactivations: change with age and dementia of the Alzheimer type. Proc Natl Acad Sci U S A 100:14504–14509

    PubMed  CAS  Google Scholar 

  62. Mantini D, Caulo M, Ferretti A et al (2009) Noxious somatosensory stimulation affects the default mode of brain function: evidence from functional MR imaging. Radiology 253:797–804

    PubMed  Google Scholar 

  63. Mason MF, Norton MI, Van Horn JD et al (2007) Wandering minds: the default network and stimulus-independent thought. Science 315:393–395

    PubMed  CAS  Google Scholar 

  64. Mazoyer B, Zago L, Mellet E et al (2001) Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Res Bull 54:287–298

    PubMed  CAS  Google Scholar 

  65. Minoshima S, Giordani B, Berent S et al (1997) Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 42:85–94

    PubMed  CAS  Google Scholar 

  66. Napadow V, Lacount L, Park K et al (2010) Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 62:2545–2555

    PubMed  Google Scholar 

  67. Nieratschker V, Frank J, Muhleisen TW et al (2010) The catechol-O-methyl transferase (COMT) gene and its potential association with schizophrenia: findings from a large German case-control and family-based sample. Schizophr Res 122:24–30

    PubMed  Google Scholar 

  68. Ochsner KN, Bunge SA, Gross JJ et al (2002) Rethinking feelings: an FMRI study of the cognitive regulation of emotion. J Cogn Neurosci 14:1215–1229

    PubMed  Google Scholar 

  69. Okochi T, Ikeda M, Kishi T et al (2009) Meta-analysis of association between genetic variants in COMT and schizophrenia: an update. Schizophr Res 110:140–148

    PubMed  Google Scholar 

  70. Otti A, Guendel H, Laer L et al (2010) I know the pain you feel – how the human brain’s default mode predicts our resonance to another’s suffering. Neuroscience 169:143–148

    PubMed  CAS  Google Scholar 

  71. Persson J, Lind J, Larsson A et al (2008) Altered deactivation in individuals with genetic risk for Alzheimer’s disease. Neuropsychologia 46:1679–1687

    PubMed  CAS  Google Scholar 

  72. Peterson BS, Potenza MN, Wang Z et al (2009) An FMRI study of the effects of psychostimulants on default-mode processing during Stroop task performance in youths with ADHD. Am J Psychiatry 166:1286–1294

    PubMed  Google Scholar 

  73. Petrella JR, Prince SE, Wang L et al (2007) Prognostic value of posteromedial cortex deactivation in mild cognitive impairment. PLoS One 2:e1104

    PubMed  Google Scholar 

  74. Pomarol-Clotet E, Fatjo-Vilas M, Mckenna PJ et al (2010) COMT Val158Met polymorphism in relation to activation and de-activation in the prefrontal cortex: A study in patients with schizophrenia and healthy subjects. Neuroimage 53:899–907

    PubMed  CAS  Google Scholar 

  75. Raichle ME (2010) Two views of brain function. Trends Cogn Sci 14:180–190

    PubMed  Google Scholar 

  76. Raichle ME, Gusnard DA (2005) Intrinsic brain activity sets the stage for expression of motivated behavior. J Comp Neurol 493:167–176

    PubMed  Google Scholar 

  77. Raichle ME, Macleod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    PubMed  CAS  Google Scholar 

  78. Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37:1083–1090; discussion 1097–1089

    PubMed  Google Scholar 

  79. Rapin I, Dunn M (2003) Update on the language disorders of individuals on the autistic spectrum. Brain Dev 25:166–172

    PubMed  Google Scholar 

  80. Rombouts SA, Barkhof F, Goekoop R et al (2005) Altered resting state networks in mild cognitive impairment and mild Alzheimer’s disease: an fMRI study. Hum Brain Mapp 26:231–239

    PubMed  Google Scholar 

  81. Salvador R, Martinez A, Pomarol-Clotet E et al (2008) A simple view of the brain through a frequency-specific functional connectivity measure. Neuroimage 39:279–289

    PubMed  CAS  Google Scholar 

  82. Sambataro F, Blasi G, Fazio L et al (2010) Treatment with olanzapine is associated with modulation of the default mode network in patients with schizophrenia. Neuropsychopharmacology 35:904–912

    PubMed  CAS  Google Scholar 

  83. Schneider F, Bermpohl F, Heinzel A et al (2008) The resting brain and our self: self-relatedness modulates resting state neural activity in cortical midline structures. Neuroscience 157:120–131

    PubMed  CAS  Google Scholar 

  84. Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356

    PubMed  CAS  Google Scholar 

  85. Sheline YI, Barch DM, Price JL et al (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci U S A 106:1942–1947

    PubMed  CAS  Google Scholar 

  86. Sheline YI, Morris JC, Snyder AZ et al (2010) APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. J Neurosci 30:17035–17040

    PubMed  CAS  Google Scholar 

  87. Sheline YI, Raichle ME, Snyder AZ et al (2010) Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly. Biol Psychiatry 67:584–587

    PubMed  CAS  Google Scholar 

  88. Shulman GL, Fiez JA, Corbetta M et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663

    Google Scholar 

  89. Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci U S A 106:13040–13045

    PubMed  CAS  Google Scholar 

  90. Smyser CD, Inder TE, Shimony JS et al (2010) Longitudinal analysis of neural network development in preterm infants. Cereb Cortex 20:2852–2862

    PubMed  Google Scholar 

  91. Sokoloff L, Mangold R, Wechsler RL et al (1955) The effect of mental arithmetic on cerebral circulation and metabolism. J Clin Invest 34:1101–1108

    PubMed  CAS  Google Scholar 

  92. Sorg C, Riedl V, Muhlau M et al (2007) Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci U S A 104:18760–18765

    PubMed  CAS  Google Scholar 

  93. Sperling RA, Laviolette PS, O’Keefe K et al (2009) Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron 63:178–188

    PubMed  CAS  Google Scholar 

  94. Spreng RN, Grady CL (2010) Patterns of brain activity supporting autobiographical memory, prospection, and theory-of-mind and their relationship to the default mode network. J Cogn Neurosci 22:1112–1123

    PubMed  Google Scholar 

  95. Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510

    PubMed  Google Scholar 

  96. Supekar K, Uddin LQ, Prater K et al (2010) Development of functional and structural connectivity within the default mode network in young children. Neuroimage 52:290–301

    PubMed  Google Scholar 

  97. Teipel SJ, Bokde AL, Meindl T et al (2010) White matter microstructure underlying default mode network connectivity in the human brain. Neuroimage 49:2021–2032

    PubMed  Google Scholar 

  98. Thomason ME, Chang CE, Glover GH et al (2008) Default-mode function and task-induced deactivation have overlapping brain substrates in children. Neuroimage 41:1493–1503

    PubMed  Google Scholar 

  99. Tian L, Jiang T, Wang Y et al (2006) Altered resting-state functional connectivity patterns of anterior cingulate cortex in adolescents with attention deficit hyperactivity disorder. Neurosci Lett 400:39–43

    PubMed  CAS  Google Scholar 

  100. Tiraboschi P, Hansen LA, Thal LJ et al (2004) The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 62:1984–1989

    PubMed  CAS  Google Scholar 

  101. Uddin LQ, Kelly AM, Biswal BB et al (2008) Network homogeneity reveals decreased integrity of default-mode network in ADHD. J Neurosci Methods 169:249–254

    PubMed  Google Scholar 

  102. Vaishnavi SN, Vlassenko AG, Rundle MM et al (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci U S A 107:17757–17762

    PubMed  CAS  Google Scholar 

  103. Van Den Heuvel M, Mandl R, Luigjes J et al (2008) Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 28:10844–10851

    Google Scholar 

  104. Vlassenko AG, Vaishnavi SN, Couture L et al (2010) Spatial correlation between brain aerobic glycolysis and amyloid-beta (Abeta) deposition. Proc Natl Acad Sci U S A 107:17763–17767

    PubMed  CAS  Google Scholar 

  105. Wang L, Zang Y, He Y et al (2006) Changes in hippocampal connectivity in the early stages of Alzheimer’s disease: evidence from resting state fMRI. Neuroimage 31:496–504

    PubMed  Google Scholar 

  106. Whitfield-Gabrieli S, Thermenos HW, Milanovic S et al (2009) Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 106:1279–1284

    PubMed  CAS  Google Scholar 

  107. WHO (2005) Internationale Klassifikation psychischer Störungen – ICD-10 Kapitel V (F). Huber, Bern

  108. Wu X, Li R, Fleisher AS et al (2011) Altered default mode network connectivity in Alzheimer’s disease – A resting functional MRI and Bayesian network study. Hum Brain Mapp, doi 10.1002/hbm.21153

  109. Zammit S, Spurlock G, Williams H et al (2007) Genotype effects of CHRNA7, CNR1 and COMT in schizophrenia: interactions with tobacco and cannabis use. Br J Psychiatry 191:402–407

    PubMed  Google Scholar 

  110. Zhao XH, Wang PJ, Li CB et al (2007) Altered default mode network activity in patient with anxiety disorders: an fMRI study. Eur J Radiol 63:373–378

    PubMed  Google Scholar 

  111. Zhou Y, Liang M, Tian L et al (2007) Functional disintegration in paranoid schizophrenia using resting-state fMRI. Schizophr Res 97:194–205

    PubMed  Google Scholar 

Download references

Interessenkonflikt

Die Autoren geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Otti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otti, A., Gündel, H., Wohlschläger, A. et al. „Default-mode“-Netzwerk des Gehirns. Nervenarzt 83, 16–24 (2012). https://doi.org/10.1007/s00115-011-3307-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-011-3307-6

Schlüsselwörter

Keywords

Navigation