Skip to main content
Log in

Quantitative bildgebende Untersuchungen im Kindes- und Jugendalter

Quantitative imaging examinations in childhood and adolescence

  • Leitthema
  • Published:
Monatsschrift Kinderheilkunde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Quantitative Verfahren gewinnen in der pädiatrischen Radiologie zunehmend an Bedeutung. Mithilfe der Quantifizierung können objektivierbare Messwerte generiert werden, die über die rein morphologische Beschreibung pathologischer Veränderungen hinausgehen.

Ziel der Arbeit

Ziel der vorliegenden Übersichtsarbeit ist die zusammenfassende Darstellung wichtiger quantitativer Techniken im Bereich Ultraschall, Computer- (CT) und Magnetresonanztomographie (MRT).

Material und Methoden

Anhand von Literatur und eigenen Fallbeispielen werden verschiedene quantitative radiologische Verfahren erläutert.

Ergebnisse

Volumetrie, Ultraschallelastographie, CT-Dichtemessung sowie „dual-source, dual-energy CT“ stellen relevante quantitative Methoden in der pädiatrischen Radiologie dar. Im Bereich der MRT steht eine Vielzahl quantitativer Techniken zur Verfügung (u. a. Messung der Fettfraktion, kardiales „mapping“, Diffusionsbildgebung), die überaus vielfältig eingesetzt werden. Mit neuen Technologien wie der Hybrid- oder molekularen bildgebenden Untersuchung kann das Spektrum quantitativer Methoden zukünftig noch erweitert werden.

Schlussfolgerung

Quantitative bildgebende Untersuchungstechniken werden im Zuge der verstärkten Individualisierung in der Medizin weiter an Bedeutung gewinnen. Die immer spezifischeren Therapien erfordern in Zukunft dedizierte quantitative bildgebende Untersuchungen.

Abstract

Background

Quantitative methods are becoming more important in pediatric radiology. Objective measurement values can be generated by quantification, which extend beyond the purely morphological description of pathological alterations.

Objective

The objective of this review article is to summarize important quantitative techniques in the fields of ultrasound, computed tomography (CT) and magnetic resonance imaging (MRI).

Material and methods

Various quantitative radiological techniques are reviewed based on the literature and clinical case examples.

Results

Volumetry, ultrasound elastography, measurements of CT attenuation, and dual-source, dual-energy CT represent relevant quantitative methods in pediatric radiology. In the field of MRI, many quantitative techniques are available or are being developed (e.g. fat fraction measurement, cardiac mapping, diffusion-weighted imaging), which can be used for a variety of diseases. New technologies, such as hybrid and molecular imaging examinations will further enlarge the spectrum of quantitative imaging in the future.

Conclusion

Quantitative imaging examination techniques will become more important in the context of an increasing individualization in medicine. The greater specificity of treatment will increasingly require quantitative and target-specific imaging in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Cademartiri F, Luccichenti G, Maffei E et al (2008) Imaging for oncologic staging and follow-up: review of current methods and novel approaches. Acta Biomed 79:85–91

    PubMed  Google Scholar 

  2. Chavhan GB, Caro-Dominguez P (2016) Diffusion-weighted imaging in pediatric body magnetic resonance imaging. Pediatr Radiol 46:847–857

    Article  PubMed  Google Scholar 

  3. Chung EM, Soderlund KA, Fagen KE (2017) Imaging of the pediatric urinary system. Radiol Clin North Am 55:337–357

    Article  PubMed  Google Scholar 

  4. Cicero G, Ascenti G, Albrecht MH et al (2020) Extra-abdominal dual-energy CT applications: a comprehensive overview. Radiol Med. https://doi.org/10.1007/s11547-019-01126-5

    Article  PubMed  Google Scholar 

  5. Dietrich CF, Ferraioli G, Sirli R et al (2019) General advice in ultrasound based elastography of pediatric patients. Med Ultrason 21:315–326

    Article  PubMed  Google Scholar 

  6. Foucher J, Chanteloup E, Vergniol J et al (2006) Diagnosis of cirrhosis by transient elastography (FibroScan): a prospective study. Gut 55:403–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Friedrich-Rust M, Nierhoff J, Lupsor M et al (2012) Performance of acoustic radiation force impulse imaging for the staging of liver fibrosis: a pooled meta-analysis. J Viral Hepat 19:e212–e219

    Article  CAS  PubMed  Google Scholar 

  8. Gatidis S, Bender B, Reimold M et al (2017) PET/MRI in children. Eur J Radiol 94:A64–a70

    Article  PubMed  Google Scholar 

  9. Ghonim S, Voges I, Gatehouse PD et al (2017) Myocardial architecture, mechanics, and fibrosis in congenital heart disease. Front Cardiovasc Med 4:30

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee MJ, Chhabra A, Pressey JG et al (2019) MR imaging of pediatric musculoskeletal tumors: recent advances and clinical applications. Magn Reson Imaging Clin N Am 27:341–371

    Article  PubMed  Google Scholar 

  11. Lee MJ, Kim MJ, Han KH et al (2013) Age-related changes in liver, kidney, and spleen stiffness in healthy children measured with acoustic radiation force impulse imaging. Eur J Radiol 82:e290–e294

    Article  PubMed  Google Scholar 

  12. Lollert A, Gies C, Laudemann K et al (2016) Ultrasound evaluation of thyroid gland pathologies after radiation therapy and chemotherapy to treat malignancy during childhood. Int J Radiat Oncol Biol Phys 94:139–146

    Article  PubMed  Google Scholar 

  13. Lollert A, Stihl C, Hotker AM et al (2018) Quantification of intramuscular fat in patients with late-onset Pompe disease by conventional magnetic resonance imaging for the long-term follow-up of enzyme replacement therapy. PLoS ONE 13:e190784

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ma D, Gulani V, Seiberlich N et al (2013) Magnetic resonance fingerprinting. Nature 495:187–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mcdonald K, Sebire NJ, Anderson J et al (2011) Patterns of shift in ADC distributions in abdominal tumours during chemotherapy-feasibility study. Pediatr Radiol 41:99–106

    Article  PubMed  Google Scholar 

  16. Messroghli DR, Moon JC, Ferreira VM et al (2017) Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 19:75

    Article  PubMed  PubMed Central  Google Scholar 

  17. Miyazaki K, Jerome NP, Collins DJ et al (2015) Demonstration of the reproducibility of free-breathing diffusion-weighted MRI and dynamic contrast enhanced MRI in children with solid tumours: a pilot study. Eur Radiol 25:2641–2650

    Article  PubMed  PubMed Central  Google Scholar 

  18. Morrow JM, Sinclair CD, Fischmann A et al (2016) MRI biomarker assessment of neuromuscular disease progression: a prospective observational cohort study. Lancet Neurol 15:65–77

    Article  PubMed  PubMed Central  Google Scholar 

  19. Müller S, Farag I, Weickert J et al (2019) Benchmarking Wilms’ tumor in multisequence MRI data: why does current clinical practice fail? Which popular segmentation algorithms perform well? J Med Imaging (bellingham) 6:34001

    Google Scholar 

  20. Oelze ML, Mamou J (2016) Review of quantitative ultrasound: envelope statistics and Backscatter coefficient imaging and contributions to diagnostic ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 63:336–351

    Article  PubMed  PubMed Central  Google Scholar 

  21. Palmeri ML, Wang MH, Dahl JJ et al (2008) Quantifying hepatic shear modulus in vivo using acoustic radiation force. Ultrasound Med Biol 34:546–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Poorman ME, Martin MN, Ma D et al (2019) Magnetic resonance fingerprinting Part 1: potential uses, current challenges, and recommendations. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26836

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ropars J, Gravot F, Salem BD et al (2020) Muscle MRI: A biomarker of disease severity in Duchenne muscular dystrophy? A systematic review. Neurology 94:117–133

    Article  PubMed  Google Scholar 

  24. Schuster A, Hor KN, Kowallick JT et al (2016) Cardiovascular magnetic resonance myocardial feature tracking: concepts and clinical applications. Circ Cardiovasc Imaging 9:e4077

    Article  PubMed  Google Scholar 

  25. Staatz G, Daldrup-Link HE, Herrmann J et al (2019) From Xrays to PET/MR, and then?—Future imaging in pediatric radiology. Fortschr Röntgenstr 191:357–366

    Article  Google Scholar 

  26. Thacker PG, Lee EY (2016) Advances in multidetector CT diagnosis of pediatric pulmonary thromboembolism. Korean J Radiol 17:198–208

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tofts PS, Brix G, Buckley DL et al (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  CAS  PubMed  Google Scholar 

  28. Wattjes MP, Kley RA, Fischer D (2010) Neuromuscular imaging in inherited muscle diseases. Eur Radiol 20:2447–2460

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yoon H, Shin HJ, Kim MJ et al (2019) Quantitative imaging in pediatric hepatobiliary disease. Korean J Radiol 20:1342–1357

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yoon SH, Goo JM, Goo HW (2013) Quantitative thoracic CT techniques in adults: can they be applied in the pediatric population? Pediatr Radiol 43:308–314

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lollert.

Ethics declarations

Interessenkonflikt

A. Lollert gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden vom Autor keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

G. Staatz, Mainz

F. Zepp, Mainz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lollert, A. Quantitative bildgebende Untersuchungen im Kindes- und Jugendalter. Monatsschr Kinderheilkd 168, 395–405 (2020). https://doi.org/10.1007/s00112-020-00892-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00112-020-00892-1

Schlüsselwörter

Keywords

Navigation