Skip to main content
Log in

Adipositas und Krebs

Obesity and cancer

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Die Inzidenz von Adipositas ist in den vergangenen Jahrzehnten in der westlichen Welt dramatisch angestiegen. Epidemiologische Daten zeigen, dass Fettleibigkeit mit einem erhöhten Risiko assoziiert ist, an bestimmten (aber nicht allen) Krebsarten zu erkranken, wobei das Krebsspektrum geschlechtsspezifische Unterschiede aufweist. Die zugrundeliegenden Mechanismen und potentiellen Faktoren sind noch weitgehend ungeklärt. Dieser Beitrag gibt einen Überblick über den gegenwärtigen Stand der Forschung. Es wird angenommen, dass Insulinresistenz und eine chronische, subklinische Entzündung im viszeralen Fettgewebe wichtige metabolische Prozesse darstellen. Als Folge davon kommt es zu Veränderungen in den Serumspiegeln von Insulin, Glukose, freien Fettsäuren, IGF-1/-2 und einer Freisetzung von proinflammatorischen Zytokinen und anderen biologisch aktiven Molekülen aus dem Fettgewebe, wie Adipokinen (z. B. Leptine und Adiponektin), VEGF und Geschlechtshormonen. Alle diese Faktoren wie auch Mikrobiota des Darms und sekundäre Gallensäuren können direkt oder indirekt das „tumor microenvironment“ so verändern, dass über Stimulation von Antiapoptose, Zellproliferation, Angiogenese und Invasion/Metastasierung der Krebszellen die Tumorprogression gefördert wird. Therapeutische Strategien sind auf eine Beseitigung der Entzündung und auf eine Wiederherstellung eines funktionalen Fettgewebes ausgerichtet. Während die bariatrische Chirurgie einen therapeutischen Nutzen in Hinblick auf die Krebsinzidenz zu bringen scheint, müssen andere Interventionen, wie die Umwandlung von Fettgewebsmakrophagen zu einem antiinflammatorischen M2-Phänotyp oder die pharmakologische Modulation der Adipokin-Serumspiegel, noch experimentell und klinisch auf ihre Eignung in Bezug auf Therapie und Prävention adipositasassoziierter Krebserkrankungen evaluiert werden.

Abstract

The incidence of obesity in the western world has increased dramatically during recent decades. Epidemiological data suggest that obesity is associated with an increased risk of several but not all types of cancers, with clear sex-specific differences. The underlying mechanisms are still a matter of debate. This review focuses on the potential factors linking obesity to cancer. Current experimental evidence suggests that insulin resistance and a chronic, subclinical inflammation in the visceral fat are the major metabolic events causing alterations in the levels of insulin, glucose, free fatty acids, insulin-like growth factor 1 (IGF-1) and 2, adipose tissue-derived proinflammatory cytokines and other bioactive molecules, such as adipokines (e.g. leptin and adiponectin), vascular endothelial growth factor (VEGF), sex hormones, gut microbiota and secondary bile acids. All these factors may act directly or indirectly on the tumor microenvironment to drive tumor progression via stimulation of cell survival/antiapoptosis, cell proliferation, angiogenesis and invasion/metastasis of the cancer cells. Therapeutic strategies that target dysfunctional or inflamed fat and have been shown to benefit patients include bariatric surgery, while other cell or hormone-directed interventions, such as conversion of visceral fat macrophages to an anti-inflammatory M2 phenotype or the pharmacological modulation of serum adipokine levels are still theoretical and need to be clinically evaluated for their ability to successfully treat or prevent obesity-related cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Agostini M, Almeida LY, Bastos DC et al (2014) The fatty acid synthase inhibitor orlistat reduces the growth and metastasis of orthotopic tongue oral squamous cell carcinomas. Mol Cancer Ther 13:585–595

    Article  CAS  PubMed  Google Scholar 

  2. Badeanlou L, Furlan-Freguia C, Yang G et al (2011) Tissue factor-protease-activated receptor 2 signaling promotes diet-induced obesity and adipose inflammation. Nat Med 17:1490–1497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Barth J (2012) Zytostatikadosierung bei Übergewichtigen – Diskussion beendet? Onkol Pharm 3:24–28

    Google Scholar 

  4. Bhaskaran K, Douglas I, Forbes H et al (2014) Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet 384:755–765

    Article  PubMed Central  PubMed  Google Scholar 

  5. Breslow L (1952) Public health aspects of weight control. Am J Public Health Nations Health 42:1116–1120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Brown KA, Simpson ER (2010) Obesity and breast cancer: progress to understanding the relationship. Cancer Res 70:4–7

    Article  CAS  PubMed  Google Scholar 

  7. Byers T, Sedjo RL (2011) Does intentional weight loss reduce cancer risk? Diabetes Obes Metab 13:1063–1072

    Article  CAS  PubMed  Google Scholar 

  8. Cani PD, Osto M, Geurts L et al (2012) Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 3:279–288

    Article  PubMed Central  PubMed  Google Scholar 

  9. Chan BT, Lee AV (2008) Insulin receptor substrates (IRSs) and breast tumorigenesis. J Mammary Gland Biol Neoplasia 13:415–422

    Article  PubMed Central  PubMed  Google Scholar 

  10. Chen J, Katsifis A, Hu C et al (2011) Insulin decreases therapeutic efficacy in colon cancer cell line HT29 via the activation of the PI3 K/Akt pathway. Curr Drug Discov Technol 8:119–125

    Article  CAS  PubMed  Google Scholar 

  11. De Pergola G, Silvestris F (2013) Obesity as a major risk factor for cancer. J Obes 2013:291546

    Google Scholar 

  12. Dobbins M, Decorby K, Choi BC (2013) The association between obesity and cancer risk: a meta-analysis of observational studies from 1985 to 2011. ISRN Prev Med 2013:680536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Endo H, Hosono K, Uchiyama T et al (2011) Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut 60:1363–1371

    Article  CAS  PubMed  Google Scholar 

  14. Feng H, Liu Q, Zhang N et al (2014) Leptin promotes metastasis by inducing an epithelial-mesenchymal transition in A549 lung cancer cells. Oncol Res 21:165–171

    Article  CAS  Google Scholar 

  15. Fenton JI, Hursting SD, Perkins SN et al (2007) Leptin induces an Apc genotype-associated colon epithelial cell chemokine production pattern associated with macrophage chemotaxis and activation. Carcinogenesis 28:455–464

    Article  CAS  PubMed  Google Scholar 

  16. Fujisawa T, Endo H, Tomimoto A et al (2008) Adiponectin suppresses colorectal carcinogenesis under the high-fat diet condition. Gut 57:1531–1538

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ghiringhelli F, Vincent J, Guiu B et al (2012) Bevacizumab plus FOLFIRI-3 in chemotherapy-refractory patients with metastatic colorectal cancer in the era of biotherapies. Invest New Drugs 30:758–764

    Article  CAS  PubMed  Google Scholar 

  18. Griggs JJ, Mangu PB, Anderson H et al (2012) Appropriate chemotherapy dosing for obese adult patients with cancer: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 30:1553–1561

    Article  PubMed  Google Scholar 

  19. Hippocrates (1785) Buch von den Krankheiten. In: Grimm JFK (Hrsg) Hippokrates Werke. Aus dem Griechischen übersetzt und mit Erläuterungen. In der Richterischen Buchhandlung, Altenburg, S. 422–633

  20. Guiu B, Petit JM, Bonnetain F (2010) Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer. Gut 59:341–347

    Article  CAS  PubMed  Google Scholar 

  21. Gunter MJ, Hoover DR, Yu H et al (2008) A prospective evaluation of insulin and insulin-like growth factor-I as risk factors for endometrial cancer. Cancer Epidemiol Biomarkers Prev 17:921–929

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Helm O, Held-Feindt J, Grage-Griebenow E et al (2014) Tumor-associated macrophages exhibit pro- and anti-inflammatory properties by which they impact on pancreatic tumorigenesis. Int J Cancer 135:843–861

    Article  CAS  PubMed  Google Scholar 

  23. Lim J, Iyer A, Liu L et al (2013) Diet-induced obesity, adipose inflammation, and metabolic dysfunction correlating with PAR2 expression are attenuated by PAR2 antagonism. FASEB J 27:4757–4767

    Article  CAS  PubMed  Google Scholar 

  24. Menendez JA, Vellon L, Lupu R (2005) Antitumoral actions of the anti-obesity drug orlistat (XenicalTM) in breast cancer cells: blockade of cell cycle progression, promotion of apoptotic cell death and PEA3-mediated transcriptional repression of Her2/neu (erbB-2) oncogene. Ann Oncol 16:1253–1267

    Article  CAS  PubMed  Google Scholar 

  25. Mokdad AH, Marks JS, Stroup DF et al (2004) Actual causes of death in the United States, 2000. JAMA 291:1238–1245

    Article  PubMed  Google Scholar 

  26. Moon HS, Liu X, Nagel JM et al (2013) Salutary effects of adiponectin on colon cancer: in vivo and in vitro studies in mice. Gut 62:561–570

    Article  CAS  PubMed  Google Scholar 

  27. Moulin CM, Rizzo LV, Halpern A (2008) Effect of surgery-induced weight loss on immune function. Expert Rev Gastroenterol Hepatol 2:617–619

    Article  PubMed  Google Scholar 

  28. Müller MJ, Schmidt T (1998) Ernährung und Ernährungswissen im Wandel der Zeit. In: Müller M (Hrsg): Ernährungsmedizinische Praxis. Methoden – Prävention – Behandlung. Springer Verlag, Berlin, S. 9–28

  29. Mutoh M, Teraoka N, Takasu S et al (2011) Loss of adiponectin promotes intestinal carcinogenesis in Min and wild-type mice. Gastroenterology 140:2000–2008

    Article  CAS  PubMed  Google Scholar 

  30. Nowossadeck E (2012) Demografische Alterung und Folgen für das Gesundheitswesen. In: Robert Koch-Institut (Hrsg.), GBE kompakt 3, RKI Berlin, Stand: 11.04.2012, www.rki.de/gbe-kompakt

  31. Pearson JR, Gill CI, Rowland IR (2009) Diet, fecal water, and colon cancer – development of a biomarker. Nutr Rev 67:509–526

    Article  PubMed  Google Scholar 

  32. Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928

    Article  CAS  PubMed  Google Scholar 

  33. Renehan AG, Soerjomataram I, Tyson M et al (2010) Incident cancer burden attributable to excess body mass index in 30 European countries. Int J Cancer 126:692–702

    Article  CAS  PubMed  Google Scholar 

  34. Riondino S, Roselli M, Palmirotta R (2014) Obesity and colorectal cancer: role of adipokines in tumor initiation and progression. World J Gastroenterol 20:5177–5190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Saxena A, Chumanevich A, Fletcher E (2012) Adiponectin deficiency: role in chronic inflammation induced colon cancer. Biochim Biophys Acta 1822:527–536

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. https://wwwdestatisde/DE/ZahlenFakten/GesellschaftStaat/Gesundheit/GesundheitszustandRelevantesVerhalten/Tabellen/Koerpermasse.html. Zugegriffen: 2. Dezember 2014

  37. Stattin P, Lukanova A, Biessy C et al (2004) Obesity and colon cancer: does leptin provide a link? Int J Cancer 109:149–152

    Article  CAS  PubMed  Google Scholar 

  38. Stefanou N, Papanikolaou V, Furukawa Y et al (2010) Leptin as a critical regulator of hepatocellular carcinoma development through modulation of human telomerase reverse transcriptase. BMC Cancer 10:442

    PubMed Central  PubMed  Google Scholar 

  39. Tan CK, Leuenberger N, Tan MJ et al (2011) Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. Diabetes 60:464–476

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Travis RC, Key TJ (2003) Oestrogen exposure and breast cancer risk. Breast Cancer Res 5:239–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Tsugane S, Inoue M (2010) Insulin resistance and cancer: epidemiological evidence. Cancer Sci 101:1073–1079

    Article  CAS  PubMed  Google Scholar 

  42. http://www.who.int/gho/mdg/poverty_hunger/underweight_text/en/. Zugegriffen: 2. Dezember 2014

  43. Yadav H, Quijano C, Kamaraju AK et al (2011) Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab 14:67–79

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Yoshimoto S, Loo TM, Atarashi K et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101

    Article  CAS  PubMed  Google Scholar 

  45. Zhu Y, Michelle Luo T, Jobin C et al (2011) Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett 309:119–127

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. H. Ungefroren, F. Gieseler und H. Lehnert geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ungefroren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ungefroren, H., Gieseler, F. & Lehnert, H. Adipositas und Krebs. Internist 56, 127–136 (2015). https://doi.org/10.1007/s00108-014-3536-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-014-3536-4

Schlüsselwörter

Keywords

Navigation