Skip to main content
Log in

Adipositas

Valider Prädiktor für das kardiometabolische Risiko?

Overweight

A valid predictor of cardiometabolic risk?

  • Schwerpunkt
  • Published:
Der Internist Aims and scope Submit manuscript

Zusammenfassung

Nach gängiger Ansicht korrelieren Übergewicht und Adipositas direkt mit dem kardiometabolischen Risiko. Eine Reihe aktueller Studien stellt diese Auffassung in Frage. Das klassische Maß für Adipositas, der Body Mass Index, scheint wenig geeignet, eine erhöhte Körperfettmasse korrekt anzuzeigen, noch weniger gar potenziell ungünstige Verteilungsstörungen. Zudem sind depot- und altersabhängige Schwankungen der Fettzellmenge (einschließlich ihrem Anstieg) über die gesamte Lebensspanne physiologisch und nicht notwendig assoziiert mit einem erhöhten Diabetes- oder kardiovaskulären Risiko. Solche Schwankungen können ganz im Gegenteil mit Multisystemanpassungen im Zusammenhang stehen, denen eine Schutzfunktion z. B. für die kardiovaskuläre und Knochengesundheit zukommt und die eine Erklärung für die zuletzt sog. „benigne Adipositas“ darstellen können. Endokrine und thermogenetische Fettzellfunktionen scheinen entscheidend für die zu Grunde liegende Biologie zu sein. In diesem Artikel beleuchten wir jüngste epidemiologische und biologische Erkenntnisse, die gegen die Annahme sprechen, dass Übergewicht ein einfaches Maß für Erkrankung ist. Abschließend zeigen wir anhand von klinischen Fallbeispielen die Schwäche einer „gewichtsfokussierten“ Herangehensweise auf und entwickeln einen praktischen Algorithmus zur Identifikation übergewichtiger Patienten mit kardiometabolischem Risiko.

Abstract

A commonly held notion directly correlates overweight and obesity with cardiometabolic risk. A number of studies have recently questioned this belief. The classic measure of obesity, the body mass index, appears less valid to properly indicate increased fat mass and, in particular, potentially harmful changes in fat depots. Moreover, depot- and age-specific alterations including increases in fat mass are physiologic throughout life and may not be associated with an increased risk for diabetes or cardiovascular complications. In contrast, they may rather entail multi-system adaptations that are protective, e. g. to cardiovascular and bone health, and represent an explanation for what has recently been called “benign obesity”. Endocrine as well as thermogenic functions of fat cells appear to be critical for the underlying biology. In this article, we highlight recent epidemiologic and biologic insights arguing against the assumption of overweight as a simple measure of disease. Finally, using selected clinical cases we demonstrate the ill-informed nature of an “overweight-focused” approach and delineate a practical algorithm to identify overweight patients at cardiometabolic risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Notes

  1. Die Risikostratifizierung orientiert sich am Consensus der Second Joint Task Force of European and other Societies on Coronary Prevention (www.chd-taskforce.com/procam_interactive.html)

Literatur

  1. Alvehus M, Burén J, Sjostrom M et al (2010) The human visceral fat depot has a unique inflammatory profile. Obesity (Silver Spring) 18:879–883

    Google Scholar 

  2. Arner P (1995) Differences in lipolysis between human subcutaneous and omental adipose tissues. Ann Med 27:435–438

    PubMed  CAS  Google Scholar 

  3. Arner P, Spalding KL (2010) Fat cell turnover in humans. Biochem Biophys Res Commun 396:101–104

    Article  PubMed  CAS  Google Scholar 

  4. Ashwell M, Hsieh SD (2005) Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr 56:303–307

    Article  PubMed  Google Scholar 

  5. Berndt J, Kralisch S, Kloting N et al (2008) Adipose triglyceride lipase gene expression in human visceral obesity. Exp Clin Endocrinol Diabetes 116:203–210

    Article  PubMed  CAS  Google Scholar 

  6. Berrington de Gonzalez A, Hartge P, Cerhan JR et al (2010) Body-mass index and mortality among 1.46 million white adults. N Engl J Med 363:2211–2219

    Article  Google Scholar 

  7. Bjorntorp P (1997) Hormonal control of regional fat distribution. Hum Reprod 12 (Suppl 1):21–25

    Article  PubMed  CAS  Google Scholar 

  8. Bluher M (2009) Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes 117:241–250

    Article  PubMed  CAS  Google Scholar 

  9. Bruun JM, Lihn AS, Verdich C et al (2003) Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab 285:E527–E533

    PubMed  CAS  Google Scholar 

  10. Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    Article  PubMed  CAS  Google Scholar 

  11. Ensrud KE, Ewing SK, Stone KL et al (2003) Intentional and unintentional weight loss increase bone loss and hip fracture risk in older women. J Am Geriatr Soc 51:1740–1747

    Article  PubMed  Google Scholar 

  12. Fischer-Posovszky P, Wabitsch M, Hochberg Z (2007) Endocrinology of adipose tissue – an update. Horm Metab Res 39:314–321

    Article  PubMed  CAS  Google Scholar 

  13. Flicker L, McCaul KA, Hankey GJ et al (2010) Body mass index and survival in men and women aged 70 to 75. J Am Geriatr Soc 58:234–241

    Article  PubMed  Google Scholar 

  14. Freedland ES (2004) Role of a critical visceral adipose tissue threshold (CVATT) in metabolic syndrome: implications for controlling dietary carbohydrates: a review. Nutr Metab (Lond) 1:12

    Google Scholar 

  15. Fruhbeck G, Gomez-Ambrosi J, Muruzabal FJ, Burrell MA (2001) The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab 280:E827–E847

    PubMed  CAS  Google Scholar 

  16. Gelsinger C, Tschoner A, Kaser S, Ebenbichler CF (2010) Adipokine update – new molecules, new functions. Wien Med Wochenschr 160:377–390

    Article  PubMed  Google Scholar 

  17. Harmelen V van, Skurk T, Rohrig K et al (2003) Effect of BMI and age on adipose tissue cellularity and differentiation capacity in women. Int J Obes Relat Metab Disord 27:889–895

    Article  PubMed  Google Scholar 

  18. Hoffstedt J, Arner E, Wahrenberg H et al (2010) Regional impact of adipose tissue morphology on the metabolic profile in morbid obesity. Diabetologia 53:2496–2503

    Article  PubMed  CAS  Google Scholar 

  19. Huxley R, Mendis S, Zheleznyakov E et al (2010) Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk – a review of the literature. Eur J Clin Nutr 64:16–22

    Article  PubMed  CAS  Google Scholar 

  20. Ibrahim MM (2010) Subcutaneous and visceral adipose tissue: structural and functional differences. Obes Rev 11:11–18

    Article  PubMed  Google Scholar 

  21. Manolopoulos KN, Karpe F, Frayn KN (2010) Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond) 34:949–959

    Google Scholar 

  22. McQuaid SE, Humphreys SM, Hodson L et al (2010) Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified fatty acids. Diabetes 59:2465–2473

    Article  PubMed  CAS  Google Scholar 

  23. Orpana HM, Berthelot JM, Kaplan MS et al (2010) BMI and mortality: results from a national longitudinal study of Canadian adults. Obesity (Silver Spring) 18:214–218

    Google Scholar 

  24. Perwitz N, Wenzel J, Wagner I et al (2010) Cannabinoid type 1 receptor blockade induces transdifferentiation towards a brown fat phenotype in white adipocytes. Diabetes Obes Metab 12:158–166

    Article  PubMed  CAS  Google Scholar 

  25. Petrovic N, Walden TB, Shabalina IG et al (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164

    Article  PubMed  CAS  Google Scholar 

  26. Pfannenberg C, Werner MK, Ripkens S, et al (2010) Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59:1789–1793

    Article  PubMed  CAS  Google Scholar 

  27. Piirto J (ed) (2010) Europe in figures. Eurostat Yearbook 2010. Eurostat Statistical Books, http://ec.europa.eu/eurostat

  28. Pischon T, Rimm EB (2006) Adiponectin: a promising marker for cardiovascular disease. Clin Chem 52:797–799

    Article  PubMed  CAS  Google Scholar 

  29. Primeau V, Coderre L, Karelis AD et al (2010) Characterizing the profile of obese patients who are metabolically healthy. Int J Obes (Lond) [Epub ahead of print]

  30. Romero-Corral A, Montori VM, Somers VK et al (2006) Association of bodyweight with total mortality and with cardiovascular events in coronary artery disease: a systematic review of cohort studies. Lancet 368:666–678

    Article  PubMed  Google Scholar 

  31. Schneider HJ, Friedrich N, Klotsche J et al (2010) The predictive value of different measures of obesity for incident cardiovascular events and mortality. J Clin Endocrinol Metab 95:1777–1785

    Article  PubMed  CAS  Google Scholar 

  32. Seale P, Bjork B, Yang W et al (2008) PRDM 16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    Article  PubMed  CAS  Google Scholar 

  33. Skurk T, Alberti-Huber C, Herder C, Hauner H (2007) Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033

    Article  PubMed  CAS  Google Scholar 

  34. Spalding KL, Arner E, Westermark PO et al (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787

    Article  PubMed  CAS  Google Scholar 

  35. Spranger J, Kroke A, Mohlig M et al (2003) Adiponectin and protection against type 2 diabetes mellitus. Lancet 361:226–228

    Article  PubMed  CAS  Google Scholar 

  36. Wajchenberg BL (2000) Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev 21:697–738

    Article  PubMed  CAS  Google Scholar 

  37. Whitlock G, Lewington S, Sherliker P et al (2009) Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 373:1083–1096

    Article  PubMed  Google Scholar 

  38. Wozniak SE, Gee LL, Wachtel MS, Frezza EE (2009) Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci 54:1847–1856

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Klein.

Anhang

Anhang

Algorithmus zur Risikoevaluation und Prävention kardiometabolischer Komplikationen beim übergewichtigen Patienten

Stufe 1

Anamnese

Besonders berücksichtigen: Gewichtszunahme innerhalb kurzer Zeit, Schlafqualität (Apnoephasen), Symptome des Hyperkortisolismus, der Hypothyreose, klassische Risikofaktoren: Nikotin, familiäre Belastung durch kardiovaskuläre Erkrankungen, Adipositas, Diabetes mellitus.

Körperliche Untersuchung

Größe, Taillenumfang, Blutdruckmessung, Zeichen der Insulinresistenz (Acanthosis nigricans), Dyslipidämie (Xanthome, Arcus lipoides) und Atherosklerose.

Labor

Nüchternblutzucker, Cholesterin, Triglyzeride, HDL, LDL, Harnsäure, Kreatinin, HbA1C, TSH.

Risikokalkulation

Über Online-Datenbanken (Infobox 1).

Entscheidung

a) Keinerlei Auffälligkeiten und in günstigster Prognosegruppe (<10%Footnote 1) für kardiovaskuläre Ereignisse bzw. Diabetesentwicklung in den nächsten 5–10 Jahren → jährliche Kontrollen, „encourage healthy life style“, keine Zielvorgaben für Gewichtsabnahme,

b) ansonsten weiter zu Stufe 2.

Stufe 2

Orientiert an pathologischem Symptom/Befund:

Metabolische Diagnostik

Endokrinologisch-diabetologisch: erweitertes endokrines Labor (evtl. inkl. nicht-klassischer prädiktiver Parameter wie hochsensitives CRP, SHBG, IGF-1, Adiponektin) sowie spezielle Funktionstests (u. a. oraler Glukosetoleranztest), Dopplersonographie und ggf. weitere Bildgebung zum Ausschluss Hyperkortisolismus, Schilddrüsenerkrankung, Prolaktinom, Hyperandrogenämie/polyzystisches Ovar-Syndrom, Diabetes mellitus,

Polysomnographie (Schlaf-Apnoe-Syndrom?).

Makroangiopathie

Häusliches Blutdruckprotokoll bzw. 24-h-Blutdruckmessung, EKG (Linkshypertrophie?), Messung des Ankle/Brachial-Index,

kardiologisch-angiologisch: Echokardiographie, Messung der Intima-Media-Dicke.

Mikroangiopathie

24-h-Sammelurin (Mikroalbuminurie?),

Fundoskopie (hypertensive Retinopathie?).

Entscheidung

a) Ohne pathologische Befunde und in günstigster Prognosegruppe (<10%1) für kardiovaskuläre Ereignisse bzw. Diabetesentwicklung in den nächsten 5–10 Jahren → vierteljährliche Kontrollen, „encourage healthy life style“, Optimierung einer evtl. Begleitmedikation (s. Infobox 2), keine Zielvorgaben für Gewichtsabnahme, bei wiederholt unauffälligen Befunden: jährliche Kontrollen,

b) bei metabolischen Auffälligkeiten: zusätzlich spezifische endokrinologisch-diabetologische, gynäkologische bzw. pulmonologische Behandlung,

c) bei mikro- und mikroangiopathischen Auffälligkeiten: zusätzlich Initiierung/Optimierung der antihypertensiven, antilipidämischen Therapie, ggf. weitere kardiologische, nephrologische und ophthalmologische Behandlung,

d) bei adäquater kardiometabolischer Kontrolle und fortbestehend mittelgradig erhöhtem Risiko (>10–20%1) weiter zu Stufe 3.

Stufe 3

a) Bei Insulinresistenz: Initiierung einer Metforminmedikation (bei HbA1c zwischen 5,7–6,5%, Off-label-Gebrauch: einschleichend dosieren, beginnend mit 500 mg zur Nacht, nach Verträglichkeit frühestens wochenweise in maximal 500-mg-Schritten bis auf 2500 mg/Tag steigern, verteilt auf 3 Dosen am Tag),

b) bei Diabetes: Optimierung der Diabetestherapie unter Berücksichtigung der gewichtsneutralen bzw. -reduzierenden Therapieoptionen,

c) nach Möglichkeit gleichzeitig Therapie im Rahmen eines strukturierten Antiadipositasprogramms, ggf. Erwägung bariatrischer Optionen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iwen, K., Perwitz, N., Lehnert, H. et al. Adipositas. Internist 52, 352–361 (2011). https://doi.org/10.1007/s00108-010-2709-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00108-010-2709-z

Schlüsselwörter

Keywords

Navigation