Skip to main content
Log in

Robotergestützte Chirurgie im Kopf-Hals-Bereich

Robot-assisted surgery in the head and neck region

  • Leitthema
  • Published:
HNO Aims and scope Submit manuscript

Zusammenfassung

Der roboterassistierten Chirurgie (RAC) wird im Kopf-Hals-Bereich ein großes Potenzial zugeschrieben, wobei sich bereits einige zugelassene Assistenzsysteme (i. d. R. im „Master-Slave-Prinzip“) vor allem in der operativen Onkologie in der klinischen Anwendung befinden. Auch wenn prinzipiell bestimmte Patientengruppen von der Anwendung der RAC profitieren könnten, sind systematische klinische und insbesondere randomisierte Studien mit Vergleich zu den bisherigen Standardverfahren weitestgehend ausgeblieben. Daher kann ein möglicher Vorteil der RAC bislang nicht adäquat nachgewiesen werden. Auf der anderen Seite zeigt sich eine stetige Entwicklung der RAC in der Kopf-Hals-Chirurgie. Herausforderungen bestehen sowohl in technischen Limitationen, z. B. einer weiteren Miniaturisierung und der fehlenden Haptik, als auch in den hohen Anschaffungs- und Unterhaltskosten bei fehlender Gegenfinanzierung. Die aktuelle Generation von Kopf-Hals-Chirurgen wird sich jedoch sowohl technisch, wissenschaftlich als auch ethisch in einem zunehmenden Maße mit der Thematik beschäftigen dürfen oder müssen.

Abstract

Robot-assisted surgery (RAS) in the head and neck region is believed to have a large potential for the improvement of patient care. Several systems with a master-slave setup are already in routine clinical use, particularly for oncologic surgery. Although specific patient groups may benefit from RAS, there is a lack of randomized clinical studies validating the advantages of these new technological systems in comparison to the existing standard procedures. On the other hand, RAS in the head and neck region is being constantly developed. Currently, the main limitations are the technical miniaturization of the tools and the loss of haptic feedback, as well as the high costs for acquisition and maintenance without financial reimbursement. In any case, the current generation of head and neck surgeons will face the technical, scientific, and ethical challenges of RAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Albus JS (1979) NBS/RIA Robotics Research Workshop. NBS/RIA Workshop on Robotic Research, Gaithersburg,, November 13–15, 1979. National Bureau of Standards, Washington

    Google Scholar 

  2. Arshad H, Durmus K, Ozer E (2013) Transoral robotic resection of selected parapharyngeal space tumors. Eur Arch Otorhinolaryngol 270:1737–1740

    Article  PubMed  Google Scholar 

  3. Byrd JK, Duvvuri U (2013) Current trends in robotic surgery for otolaryngology. Curr Otorhinolaryngol Rep 1:153–157

    Article  PubMed  PubMed Central  Google Scholar 

  4. Byrd JK, Smith KJ, De Almeida JR et al (2014) Transoral robotic surgery and the unknown primary: A cost-effectiveness analysis. Otolaryngol Head Neck Surg 150:976–982

    Article  PubMed  PubMed Central  Google Scholar 

  5. Carrau RL, Prevedello DM, De Lara D et al (2013) Combined transoral robotic surgery and endoscopic endonasal approach for the resection of extensive malignancies of the skull base. Head Neck 35:E351–E358

    Article  PubMed  Google Scholar 

  6. Chai YJ, Lee KE, Youn YK (2014) Can robotic thyroidectomy be performed safely in thyroid carcinoma patients? Endocrinol Metab (Seoul) 29:226–232

    Article  Google Scholar 

  7. Dallan I, Castelnuovo P, Montevecchi F et al (2012) Combined transoral transnasal robotic-assisted nasopharyngectomy: A cadaveric feasibility study. Eur Arch Otorhinolaryngol 269:235–239

    Article  PubMed  Google Scholar 

  8. De Almeida JR, Li R, Magnuson JS et al (2015) Oncologic outcomes after transoral robotic surgery : A multi-institutional study. JAMA Otolaryngol Head Neck Surg 141:1043–1051

    Article  PubMed  Google Scholar 

  9. De Almeida JR, Moskowitz AJ, Miles BA et al (2014) Cost-effectiveness of transoral robotic surgery versus (chemo)radiotherapy for early T classification oropharyngeal carcinoma: A cost-utility analysis. Head Neck. doi:10.1002/hed.23930

    Google Scholar 

  10. Diaz I, Gil JJ, Louredo M (2014) A haptic pedal for surgery assistance. Comput Methods Programs Biomed 116:97–104

    Article  PubMed  Google Scholar 

  11. Dombree M, Crott R, Lawson G et al (2014) Cost comparison of open approach, transoral laser microsurgery and transoral robotic surgery for partial and total laryngectomies. Eur Arch Otorhinolaryngol 271:2825–2834

    Article  PubMed  Google Scholar 

  12. Dowthwaite S, Nichols AC, Yoo J et al (2013) Transoral robotic total laryngectomy: Report of 3 cases. Head Neck 35(11):E338–E342

    Article  PubMed  Google Scholar 

  13. Dziegielewski PT, Teknos TN, Durmus K et al (2013) Transoral robotic surgery for oropharyngeal cancer: Long-term quality of life and functional outcomes. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.2747

    PubMed  PubMed Central  Google Scholar 

  14. Fernández-Fernández MM, Gonzalez LM-J, Calvo CR et al (2015) Transoral ultrasonic total laryngectomy (TOUSS-TL): description of a new endoscopic approach and report of two cases. Eur Arch Otorhinolaryngol. doi:10.1007/s00405-015-3784-5

    PubMed Central  Google Scholar 

  15. Friedrich DT, Scheithauer MO, Greve J et al (2015) Potential advantages of a single-port, operator-controlled flexible endoscope system for transoral surgery of the larynx. Ann Otol Rhinol Laryngol 124:655–662

    Article  PubMed  Google Scholar 

  16. Hanna EY, Holsinger C, Demonte F et al (2007) Robotic endoscopic surgery of the skull base: A novel surgical approach. Arch Otolaryngol Head Neck Surg 133:1209–1214

    Article  PubMed  Google Scholar 

  17. Hans S, Jouffroy T, Veivers D et al (2013) Transoral robotic-assisted free flap reconstruction after radiation therapy in hypopharyngeal carcinoma: Report of two cases. Eur Arch Otorhinolaryngol 270:2359–2364

    Article  PubMed  Google Scholar 

  18. Hoffmann TK, Schuler PJ, Bankfalvi A et al (2014) Comparative analysis of resection tools suited for transoral robot-assisted surgery. Eur Arch Otorhinolaryngol 271:1207–1213

    Article  PubMed  Google Scholar 

  19. Hurtuk AM, Marcinow A, Agrawal A et al (2012) Quality-of-life outcomes in transoral robotic surgery. Otolaryngol Head Neck Surg 146:68–73

    Article  PubMed  Google Scholar 

  20. Ishikawa N, Kawaguchi M, Moriyama H et al (2013) Robot-assisted thyroidectomy with novel camera-port retractor. Innovations (Phila) 8:384–388

    Article  Google Scholar 

  21. Kandil E, Noureldine S, Abdel Khalek M et al (2011) Initial experience using robot-assisted transaxillary thyroidectomy for Graves’ disease. J Visc Surg 148:e447–451

    Article  CAS  PubMed  Google Scholar 

  22. Kang SW, Lee SC, Lee SH et al (2009) Robotic thyroid surgery using a gasless, transaxillary approach and the da Vinci S system: The operative outcomes of 338 consecutive patients. Surgery 146:1048–1055

    Article  PubMed  Google Scholar 

  23. Kang SW, Lee SH, Ryu HR et al (2010) Initial experience with robot-assisted modified radical neck dissection for the management of thyroid carcinoma with lateral neck node metastasis. Surgery 148:1214–1221

    Article  PubMed  Google Scholar 

  24. Kobayashi Y, Moreira P, Liu C et al (2011) Haptic feedback control in medical robots through fractional viscoelastic tissue model. Conf Proc IEEE Eng Med Biol Soc 2011:6704–6708

    PubMed  Google Scholar 

  25. Kristin J, Kolmer A, Kraus P et al (2015) Development of a new endoscope holder for head and neck surgery-from the technical design concept to implementation. Eur Arch Otorhinolaryngol 272:1239–1244

    Article  PubMed  Google Scholar 

  26. Lawson G, Mendelsohn AH, Van Der Vorst S et al (2013) Transoral robotic surgery total laryngectomy. Laryngoscope 123:193–196

    Article  PubMed  Google Scholar 

  27. Lee HS, Kim WS, Hong HJ et al (2012) Robot-assisted Supraomohyoid neck dissection via a modified face-lift or retroauricular approach in early-stage cN0 squamous cell carcinoma of the oral cavity: A comparative study with conventional technique. Ann Surg Oncol 19:3871–3878

    Article  PubMed  Google Scholar 

  28. Lee HY, You JY, Woo SU et al (2015) Transoral periosteal thyroidectomy: Cadaver to human. Surg Endosc 29:898–904

    Article  PubMed  Google Scholar 

  29. Lee JY, Lega B, Bhowmick D et al (2010) Da Vinci Robot-assisted transoral odontoidectomy for basilar invagination. ORL J Otorhinolaryngol Relat Spec 72:91–95

    Article  PubMed  Google Scholar 

  30. Lee S, Kim HY, Lee CR et al (2014) A prospective comparison of patient body image after robotic thyroidectomy and conventional open thyroidectomy in patients with papillary thyroid carcinoma. Surgery 156:117–125

    Article  PubMed  Google Scholar 

  31. Liu C, Moreira P, Zemiti N et al (2011) 3D force control for robotic-assisted beating heart surgery based on viscoelastic tissue model. Conf Proc IEEE Eng Med Biol Soc 2011:7054–7058

    PubMed  Google Scholar 

  32. Lobe TE, Wright SK, Irish MS (2005) Novel uses of surgical robotics in head and neck surgery. J Laparoendosc Adv Surg Tech A 15:647–652

    Article  PubMed  Google Scholar 

  33. Lorincz BB, Mockelmann N, Busch CJ et al (2015) Two-year survival analysis of 50 consecutive head and neck cancer patients treated with Transoral Robotic surgery in a single european centre. Ann Surg Oncol 22(Suppl 3):1028–1033

    Article  Google Scholar 

  34. Mandapathil M, Greene B, Wilhelm T (2015) Transoral surgery using a novel single-port flexible endoscope system. Eur Arch Otorhinolaryngol 272:2451–2456

    Article  PubMed  Google Scholar 

  35. Mattheis S, Lang S (2015) A new flexible endoscopy-system for the transoral resection of head and neck tumors. Laryngorhinootologie 94:25–28

    CAS  PubMed  Google Scholar 

  36. Mattheis S, Mandapathil M, Rothmeier N et al (2012) Transoral robotic surgery for head and neck tumors: A series of 17 patients. Laryngorhinootologie 91:768–773

    Article  CAS  PubMed  Google Scholar 

  37. Mattos LS, Deshpande N, Barresi G et al (2014) A novel computerized surgeon-machine interface for robot-assisted laser phonomicrosurgery. Laryngoscope 124:1887–1894

    Article  PubMed  Google Scholar 

  38. Mccool RR, Warren FM, Wiggins RH 3rd et al (2010) Robotic surgery of the infratemporal fossa utilizing novel suprahyoid port. Laryngoscope 120:1738–1743

    Article  PubMed  Google Scholar 

  39. Moore EJ, Janus J, Kasperbauer J (2012) Transoral robotic surgery of the oropharynx: Clinical and anatomic considerations. Clin Anat 25:135–141

    Article  PubMed  Google Scholar 

  40. Mozer P, Troccaz J, Stoianovici D (2009) Urologic robots and future directions. Curr Opin Urol 19:114–119

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nathan CO, Chakradeo V, Malhotra K et al (2006) The voice-controlled robotic assist scope holder AESOP for the endoscopic approach to the sella. Skull Base 16:123–131

    Article  PubMed  PubMed Central  Google Scholar 

  42. O’malley BW Jr., Quon H, Leonhardt FD et al (2010) Transoral robotic surgery for parapharyngeal space tumors. ORL J Otorhinolaryngol Relat Spec 72:332–336

    Article  PubMed  Google Scholar 

  43. O’malley BW Jr., Weinstein GS, Snyder W et al (2006) Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 116:1465–1472

    Article  PubMed  Google Scholar 

  44. Okamura AM (2009) Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol 19:102–107

    Article  PubMed  PubMed Central  Google Scholar 

  45. Olds K, Hillel AT, Cha E et al (2011) Robotic endolaryngeal flexible (Robo-ELF) scope: A preclinical feasibility study. Laryngoscope 121:2371–2374

    Article  PubMed  Google Scholar 

  46. Ozer E, Waltonen J (2008) Transoral robotic nasopharyngectomy: A novel approach for nasopharyngeal lesions. Laryngoscope 118:1613–1616

    Article  PubMed  Google Scholar 

  47. Park YM, Byeon HK, Chung HP et al (2013) Comparison study of transoral robotic surgery and radical open surgery for hypopharyngeal cancer. Acta Otolaryngol 133:641–648

    Article  PubMed  Google Scholar 

  48. Park YM, Lee WJ, Yun IS et al (2013) Free flap reconstruction after robot-assisted neck dissection via a modified face-lift or retroauricular approach. Ann Surg Oncol 20:891–898

    Article  PubMed  Google Scholar 

  49. Parmar A, Grant DG, Loizou P (2010) Robotic surgery in ear nose and throat. Eur Arch Otorhinolaryngol 267:625–633

    Article  PubMed  Google Scholar 

  50. Reiley CE, Akinbiyi T, Burschka D et al (2008) Effects of visual force feedback on robot-assisted surgical task performance. J Thorac Cardiovasc Surg 135:196–202

    Article  PubMed  PubMed Central  Google Scholar 

  51. Remacle M, Mnprasad V, Lawson G et al (2015) Transoral robotic surgery (TORS) with the Medrobotics Flex System: First surgical application on humans. Eur Arch Otorhinolaryngol 272:1451–1455

    Article  CAS  PubMed  Google Scholar 

  52. Remacle M, Ricci-Maccarini A, Matar N et al (2012) Reliability and efficacy of a new CO2 laser hollow fiber: A prospective study of 39 patients. Eur Arch Otorhinolaryngol 269:917–921

    Article  PubMed  Google Scholar 

  53. Richmon JD, Quon H, Gourin CG (2014) The effect of transoral robotic surgery on short-term outcomes and cost of care after oropharyngeal cancer surgery. Laryngoscope 124:165–171

    Article  PubMed  Google Scholar 

  54. Schneider JS, Burgner J, Webster RJ 3rd et al (2013) Robotic surgery for the sinuses and skull base: What are the possibilities and what are the obstacles? Curr Opin Otolaryngol Head Neck Surg 21:11–16

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schuler PJ, Duvvuri U, Friedrich DT et al (2015) First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery. Laryngoscope 125:645–648

    Article  PubMed  Google Scholar 

  56. Schuler PJ, Hoffmann TK, Duvvuri U et al (2014) Demonstration of nasopharyngeal surgery with a single port operator-controlled flexible endoscope system. Head Neck. doi:10.1002/hed.23910

    Google Scholar 

  57. Schuler PJ, Hoffmann TK, Veit JA et al (2016) Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system. Int J Med Robot. doi:10.1002/rcs.1749

    Google Scholar 

  58. Schuler PJ, Scheithauer M, Rotter N et al (2015) A single-port operator-controlled flexible endoscope system for endoscopic skull base surgery. HNO 63:189–194

    Article  CAS  PubMed  Google Scholar 

  59. Sher DJ, Fidler MJ, Tishler RB et al (2016) Cost-effectiveness analysis of chemoradiation therapy versus Transoral Robotic surgery for human papillomavirus-associated, clinical N2 Oropharyngeal cancer. Int J Radiat Oncol Biol Phys 94:512–522

    Article  PubMed  Google Scholar 

  60. Song CM, Cho YH, Ji YB et al (2013) Comparison of a gasless unilateral axillo-breast and axillary approach in robotic thyroidectomy. Surg Endosc 27:3769–3775

    Article  PubMed  Google Scholar 

  61. Song HG, Yun IS, Lee WJ et al (2013) Robot-assisted free flap in head and neck reconstruction. Arch Plast Surg 40:353–358

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sreenath SB, Rawal RB, Zanation AM (2014) The combined endonasal and transoral approach for the management of skull base and nasopharyngeal pathology: A case series. Neurosurg Focus 37:E2

    Article  PubMed  Google Scholar 

  63. Strauss G, Hofer M, Kehrt S et al (2007) Manipulator assisted endoscope guidance in functional endoscopic sinus surgery: Proof of concept. HNO 55:177–184

    Article  CAS  PubMed  Google Scholar 

  64. Tae K, Ji YB, Song CM et al (2013) Robotic selective neck dissection using a gasless postauricular facelift approach for early head and neck cancer: Technical feasibility and safety. J Laparoendosc Adv Surg Tech A 23:240–245

    Article  PubMed  Google Scholar 

  65. Tavakoli M, Patel RV, Moallem M (2005) Haptic interaction in robot-assisted endoscopic surgery: A sensorized end-effector. Int J Med Robot 1:53–63

    Article  CAS  PubMed  Google Scholar 

  66. Thompson GB (2014) Commentary on: A prospective comparison of patient body image after robotic thyroidectomy and conventional open thyroidectomy in patients with papillary thyroid carcinoma. Surgery 156:128–129

    Article  PubMed  Google Scholar 

  67. Trevillot V, Garrel R, Dombre E et al (2013) Robotic endoscopic sinus and skull base surgery: Review of the literature and future prospects. Eur Ann Otorhinolaryngol Head Neck Dis 130:201–207

    Article  CAS  PubMed  Google Scholar 

  68. Tsang RK, Ho WK, Wei WI et al (2013) Transoral robotic assisted nasopharyngectomy via a lateral palatal flap approach. Laryngoscope 123:2180–2183

    Article  PubMed  Google Scholar 

  69. Van Abel KM, Moore EJ, Carlson ML et al (2012) Transoral robotic surgery using the thulium:YAG laser: A prospective study. Arch Otolaryngol Head Neck Surg 138:158–166

    Article  PubMed  Google Scholar 

  70. Vicini C, Montevecchi F, Pang K et al (2014) Combined transoral robotic tongue base surgery and palate surgery in obstructive sleep apnea-hypopnea syndrome: Expansion sphincter pharyngoplasty versus uvulopalatopharyngoplasty. Head Neck 36:77–83

    Article  PubMed  Google Scholar 

  71. Wei WI, Ho WK (2010) Transoral robotic resection of recurrent nasopharyngeal carcinoma. Laryngoscope 120:2011–2014

    Article  PubMed  Google Scholar 

  72. Weinstein GS, O’malley BW Jr., Magnuson JS et al (2012) Transoral robotic surgery: A multicenter study to assess feasibility, safety, and surgical margins. Laryngoscope 122:1701–1707

    Article  PubMed  Google Scholar 

  73. Wurm J, Bumm K, Steinhart H et al (2005) Development of an active robot system for multi-modal paranasal sinus surgery. HNO 53:446–454

    Article  CAS  PubMed  Google Scholar 

  74. Xia T, Baird C, Jallo G et al (2008) An integrated system for planning, navigation and robotic assistance for skull base surgery. Int J Med Robot 4:321–330

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yin Tsang RK, Ho WK, Wei WI (2012) Combined transnasal endoscopic and transoral robotic resection of recurrent nasopharyngeal carcinoma. Head Neck 34:1190–1193

    Article  PubMed  Google Scholar 

  76. µRALP (2015) Project summary. Micro-technologies and systems for robot-assisted laser phonomicrosurgery. january 2012 – march 2015. https://www.microralp.eu/images/project/uRALP_Project_Summary.pdf

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Schuler.

Ethics declarations

Interessenkonflikt

T.K. Hoffmann, D.T. Friedrich und P.J. Schuler haben keine finanzielle Unterstützung für die Autorenschaft oder Publikation dieses Artikels erhalten. Die Autoren haben Kadaverstudien in den Räumlichkeiten der Fa. Medrobotics (USA) durchgeführt, für welche die Reisekosten übernommen worden sind. Die Autoren haben außerdem an der klinischen Studie der Fa. Medrobotics (NCT02262247) teilgenommen. Während der Studie wurde ein Unkostenbeitrag pro Fall an die Firma bezahlt.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoffmann, T.K., Friedrich, D.T. & Schuler, P.J. Robotergestützte Chirurgie im Kopf-Hals-Bereich. HNO 64, 658–666 (2016). https://doi.org/10.1007/s00106-016-0219-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00106-016-0219-6

Schlüsselwörter

Keywords

Navigation