Skip to main content
Log in

Perioperatives Volumenmanagement

Perioperative fluid management

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Eine adäquate perioperative Infusionstherapie ist wesentlich für das perioperative Outcome eines Patienten. Eine Optimierung der perioperativen Flüssigkeitstherapie führt zu einer Verbesserung des postoperativen Outcomes, verringert perioperative Komplikationen und reduziert die Hospitalisierung. Sowohl Hypo- als auch Hypervolämie können zu einer erhöhten Rate perioperativer Komplikationen führen. Hauptziel ist die Euvolämie mittels GDT („goal-directed therapy“: zielorientierte perioperative Volumentherapie), eine Kombination aus Volumenmanagement und Inotropika, um die Perfusion während der Operation zu optimieren. Das perioperative Flüssigkeitsmanagement sollte jedoch auch die prä- und postoperativen Perioden berücksichtigen. Das schließt die präoperative Gabe kohlenhydratreicher Getränke bis 2 h präoperativ genauso ein, wie die postoperative Phase, in der die Per-os-Hydratation frühzeitig begonnen und eine übermäßige i.v. Flüssigkeitszufuhr vermieden werden sollte. Die Implementierung eines umfassenden multimodalen zielgerichteten Volumenmanagements in einem ERAS-Protokoll ist effizient, der genaue Stellenwert bleibt aber momentan noch unklar.

Abstract

An appropriate perioperative infusion management is pivotal for the perioperative outcome of the patient. Optimization of the perioperative fluid treatment often results in enhanced postoperative outcome, reduced perioperative complications and shortened hospitalization. Hypovolemia as well as hypervolemia can lead to an increased rate of perioperative complications. The main goal is to maintain perioperative euvolemia by goal-directed therapy (GDT), a combination of fluid management and inotropic medication, to optimize perfusion conditions in the perioperative period; however, perioperative fluid management should also include the preoperative and postoperative periods. This encompasses the preoperative administration of carbohydrate-rich drinks up to 2 h before surgery. In the postoperative period, patients should be encouraged to start per os hydration early and excessive i.v. fluid administration should be avoided. Implementation of a comprehensive multimodal, goal-directed fluid management within an enhanced recovery after surgery (ERAS) protocol is efficient but the exact status of indovodual items remains unclear at present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Khuri SF, Henderson WG, DePalma RG, Mosca C, Healey NA, Kumbhani DJ (2005) Determinants of long-term survival after major surgery and the adverse effect of postoperative complications. Ann Surg 242(3):326–341 (discussion 341–3)

    PubMed  PubMed Central  Google Scholar 

  2. Thiele RH, Raghunathan K, Brudney CS et al (2016) American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on perioperative fluid management within an enhanced recovery pathway for colorectal surgery. Perioper Med 5:24

    Article  Google Scholar 

  3. Feldheiser A, Aziz O, Baldini G et al (2016) Enhanced Recovery After Surgery (ERAS) for gastrointestinal surgery, part 2: consensus statement for anaesthesia practice. Acta Anaesthesiol Scand 60(3):289–334

    Article  CAS  PubMed  Google Scholar 

  4. Trinooson CD, Gold ME (2013) Impact of goal-directed perioperative fluid management in high-risk surgical procedures: a literature review. AANA J 81(5):357–368

    PubMed  Google Scholar 

  5. Rioux J‑P, Lessard M, de Bortoli B et al (2009) Pentastarch 10 % (250 kDa/0.45) is an independent risk factor of acute kidney injury following cardiac surgery. Crit Care Med 37(4):1293–1298

    Article  CAS  PubMed  Google Scholar 

  6. Srinivasa S, Hill AG (2012) Perioperative fluid administration: historical highlights and implications for practice. Ann Surg 256(6):1113–1118

    Article  PubMed  Google Scholar 

  7. Shires T, Williams J, Brown F (1961) Acute change in extracellular fluids associated with major surgical procedures. Ann Surg 154:803–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christopherson R, Beattie C, Frank SM et al (1993) Perioperative morbidity in patients randomized to epidural or general anesthesia for lower extremity vascular surgery. Anesthesiology 79(3):422–434 (Perioperative Ischemia Randomized Anesthesia Trial Study Group)

    Article  CAS  PubMed  Google Scholar 

  9. Hartmann M, Jönsson K, Zederfeldt B (1992) Effect of tissue perfusion and oxygenation on accumulation of collagen in healing wounds. Randomized study in patients after major abdominal operations. Eur J Surg 158(10):521–526

    CAS  PubMed  Google Scholar 

  10. Prien T, Backhaus N, Pelster F, Pircher W, Bünte H, Lawin P (1990) Effect of intraoperative fluid administration and colloid osmotic pressure on the formation of intestinal edema during gastrointestinal surgery. J Clin Anesth 2(5):317–323

    Article  CAS  PubMed  Google Scholar 

  11. Gan TJ, Soppitt A, Maroof M et al (2002) Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology 97(4):820–826

    Article  PubMed  Google Scholar 

  12. Lobo SM, Rezende E, Knibel MF et al (2011) Early determinants of death due to multiple organ failure after noncardiac surgery in high-risk patients. Anesth Analg 112(4):877–883

    Article  PubMed  Google Scholar 

  13. Nohé B, Ploppa A, Schmidt V, Unertl K (2011) Volumentherapie in der Intensivmedizin. Anaesthesist 60(5):457–473

    Article  PubMed  Google Scholar 

  14. Convertino VA (2007) Blood volume response to physical activity and inactivity. Am J Med Sci 334(1):72–79

    Article  PubMed  Google Scholar 

  15. Kaye AD (2009) Intravascular fluid and electrolyte physiology. In: Miller’s Anesthesia, 7. Aufl. Churchill Livingstone, New York, S 1705–1737

    Google Scholar 

  16. Soni N (2009) British consensus guidelines on intravenous fluid therapy for adult surgical patients (Giftasup): Cassandra’s view. Anaesthesia 64(3):235–238

    Article  CAS  PubMed  Google Scholar 

  17. Haas SA, Saugel B, Trepte CJ, Reuter DA (2015) Zielorientierte Volumen- und Kreislauftherapie : Konzepte, Indikationen und Risiken. Anaesthesist 64(7):494–505

    Article  CAS  PubMed  Google Scholar 

  18. Minto G, Mythen MG (2015) Perioperative fluid management: science, art or random chaos? Br J Anaesth 114(5):717–721

    Article  CAS  PubMed  Google Scholar 

  19. Gustafsson UO, Scott MJ, Schwenk W et al (2013) Guidelines for perioperative care in elective colonic surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations. World J Surg 37(2):259–284

    Article  CAS  PubMed  Google Scholar 

  20. Bundgaard-Nielsen M, Jørgensen CC, Secher NH, Kehlet H (2010) Functional intravascular volume deficit in patients before surgery. Acta Anaesthesiol Scand 54(4):464–469

    Article  CAS  PubMed  Google Scholar 

  21. Weimann A, Braga M, Carli F et al (2017) ESPEN guideline: clinical nutrition in surgery. Clin Nutr 36(3):623–650

    Article  PubMed  Google Scholar 

  22. American Society of Anesthesiologists Committee (2011) Practice guidelines for preoperative fasting and the use of pharmacologic agents to reduce the risk of pulmonary aspiration: application to healthy patients undergoing elective procedures: an updated report by the American Society of Anesthesiologists Committee on Standards and Practice Parameters. Anesthesiology 114(3):495–511

    Article  Google Scholar 

  23. Lobo DN, Hendry PO, Rodrigues G et al (2009) Gastric emptying of three liquid oral preoperative metabolic preconditioning regimens measured by magnetic resonance imaging in healthy adult volunteers: a randomised double-blind, crossover study. Clin Nutr 28(6):636–641

    Article  PubMed  Google Scholar 

  24. Shiraishi T, Kurosaki D, Nakamura M et al (2017) Gastric fluid volume change after oral rehydration solution intake in morbidly obese and normal controls: a magnetic resonance imaging-based analysis. Anesth Analg 124(4):1174–1178

    Article  PubMed  Google Scholar 

  25. Merchant RN, Dobson G (2016) Special announcement: guidelines to the practice of anesthesia - revised edition. Can J Anaesth 63(1):12–15

    Article  PubMed  Google Scholar 

  26. Smith MD, McCall J, Plank L, Herbison GP, Soop M, Nygren J (2014) Preoperative carbohydrate treatment for enhancing recovery after elective surgery. Cochrane Database Syst Rev 8:CD9161

    Google Scholar 

  27. Ljungqvist O (2005) To fast or not to fast before surgical stress. Nutrition 21(7–8):885–886

    Article  PubMed  Google Scholar 

  28. Srinivasa S, Taylor MHG, Singh PP, Yu T‑C, Soop M, Hill AG (2013) Randomized clinical trial of goal-directed fluid therapy within an enhanced recovery protocol for elective colectomy. Br J Surg 100(1):66–74

    Article  CAS  PubMed  Google Scholar 

  29. Nygren J, Soop M, Thorell A, Efendic S, Nair KS, Ljungqvist O (1998) Preoperative oral carbohydrate administration reduces postoperative insulin resistance. Clin Nutr 17(2):65–71

    Article  CAS  PubMed  Google Scholar 

  30. Hausel J, Nygren J, Thorell A, Lagerkranser M, Ljungqvist O (2005) Randomized clinical trial of the effects of oral preoperative carbohydrates on postoperative nausea and vomiting after laparoscopic cholecystectomy. Br J Surg 92(4):415–421

    Article  CAS  PubMed  Google Scholar 

  31. Awad S, Varadhan KK, Ljungqvist O, Lobo DN (2013) A meta-analysis of randomised controlled trials on preoperative oral carbohydrate treatment in elective surgery. Clin Nutr 32(1):34–44

    Article  CAS  PubMed  Google Scholar 

  32. Luttikhold J, Oosting A, van den Braak CCM et al (2013) Preservation of the gut by preoperative carbohydrate loading improves postoperative food intake. Clin Nutr 32(4):556–561

    Article  CAS  PubMed  Google Scholar 

  33. Thiele RH, Raghunathan K, Brudney CS et al (2018) Correction to: American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on perioperative fluid management within an enhanced recovery pathway for colorectal surgery. Perioper Med 7:5

    Article  Google Scholar 

  34. Jonsson K, Jensen JA, Goodson WH et al (1991) Tissue oxygenation, anemia, and perfusion in relation to wound healing in surgical patients. Ann Surg 214(5):605–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Varadhan KK, Lobo DN (2010) A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc 69(4):488–498

    Article  PubMed  Google Scholar 

  36. Han-Geurts IJM, Hop WCJ, Kok NFM, Lim A, Brouwer KJ, Jeekel J (2007) Randomized clinical trial of the impact of early enteral feeding on postoperative ileus and recovery. Br J Surg 94(5):555–561

    Article  CAS  PubMed  Google Scholar 

  37. Lobo DN, Stanga Z, Aloysius MM et al (2010) Effect of volume loading with 1 liter intravenous infusions of 0.9 % saline, 4 % succinylated gelatine (Gelofusine) and 6 % hydroxyethyl starch (Voluven) on blood volume and endocrine responses: a randomized, three-way crossover study in healthy volunteers. Crit Care Med 38(2):464–470

    Article  CAS  PubMed  Google Scholar 

  38. Cherpanath TGV, Hirsch A, Geerts BF et al (2016) Predicting fluid responsiveness by passive leg raising: a systematic review and meta-analysis of 23 clinical trials. Crit Care Med 44(5):981–991

    Article  PubMed  Google Scholar 

  39. Myles PS, Andrews S, Nicholson J, Lobo DN, Mythen M (2017) Contemporary approaches to perioperative IV fluid therapy. World J Surg 41(10):2457–2463

    Article  PubMed  Google Scholar 

  40. Rollins KE, Lobo DN (2016) Intraoperative goal-directed fluid therapy in elective major abdominal surgery: a meta-analysis of randomized controlled trials. Ann Surg 263(3):465–476

    Article  PubMed  Google Scholar 

  41. Miller TE, Roche AM, Mythen M (2015) Fluid management and goal-directed therapy as an adjunct to Enhanced Recovery After Surgery (ERAS). Can J Anaesth 62(2):158–168

    Article  PubMed  Google Scholar 

  42. Pearse RM, Harrison DA, MacDonald N et al (2014) Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA 311(21):2181–2190

    Article  CAS  PubMed  Google Scholar 

  43. Myles PS, Bellomo R, Corcoran T et al (2018) Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med 378(24):2263–2274

    Article  PubMed  Google Scholar 

  44. Brandstrup B (2018) Finding the right balance. N Engl J Med 378(24):2335–2336

    Article  PubMed  Google Scholar 

  45. Salmasi V, Maheshwari K, Yang D et al (2017) Relationship between Intraoperative hypotension, defined by either reduction from baseline or absolute thresholds, and acute kidney and myocardial injury after Noncardiac surgery: a retrospective cohort analysis. Anesthesiology 126(1):47–65

    Article  PubMed  Google Scholar 

  46. Benes J, Chytra I, Altmann P et al (2010) Intraoperative fluid optimization using stroke volume variation in high risk surgical patients: results of prospective randomized study. Crit Care 14(3):R118

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wilson RTJ, Minto G (2017) The great fluid debate: time for Flexit? Br J Anaesth 118(6):819–822

    Article  CAS  PubMed  Google Scholar 

  48. Brandstrup B, Svendsen PE, Rasmussen M et al (2012) Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance? Br J Anaesth 109(2):191–199

    Article  CAS  PubMed  Google Scholar 

  49. Berlauk JF, Abrams JH, Gilmour IJ, O’Connor SR, Knighton DR, Cerra FB (1991) Preoperative optimization of cardiovascular hemodynamics improves outcome in peripheral vascular surgery. A prospective, randomized clinical trial. Ann Surg 214(3):289–297 (discussion 298–9)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mythen MG, Webb AR (1995) Perioperative plasma volume expansion reduces the incidence of gut mucosal hypoperfusion during cardiac surgery. Arch Surg 130(4):423–429

    Article  CAS  PubMed  Google Scholar 

  51. Goepfert MS, Richter HP, zu Eulenburg C et al (2013) Individually optimized hemodynamic therapy reduces complications and length of stay in the intensive care unit: a prospective, randomized controlled trial. Anesthesiology 119(4):824–836

    Article  CAS  PubMed  Google Scholar 

  52. Sinclair S, James S, Singer M (1997) Intraoperative intravascular volume optimisation and length of hospital stay after repair of proximal femoral fracture: randomised controlled trial. BMJ 315(7113):909–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Salzwedel C, Puig J, Carstens A et al (2013) Perioperative goal-directed hemodynamic therapy based on radial arterial pulse pressure variation and continuous cardiac index trending reduces postoperative complications after major abdominal surgery: a multi-center, prospective, randomized study. Crit Care 17(5):R191

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wilson J, Woods I, Fawcett J et al (1999) Reducing the risk of major elective surgery: randomised controlled trial of preoperative optimisation of oxygen delivery. BMJ 318(7191):1099–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ueno S, Tanabe G, Yamada H et al (1998) Response of patients with cirrhosis who have undergone partial hepatectomy to treatment aimed at achieving supranormal oxygen delivery and consumption. Surgery 123(3):278–286

    Article  CAS  PubMed  Google Scholar 

  56. Challand C, Struthers R, Sneyd JR et al (2012) Randomized controlled trial of intraoperative goal-directed fluid therapy in aerobically fit and unfit patients having major colorectal surgery. Br J Anaesth 108(1):53–62

    Article  CAS  PubMed  Google Scholar 

  57. Lobo SM, Salgado PF, Castillo VG et al (2000) Effects of maximizing oxygen delivery on morbidity and mortality in high-risk surgical patients. Crit Care Med 28(10):3396–3404

    Article  CAS  PubMed  Google Scholar 

  58. Cecconi M, Fasano N, Langiano N et al (2011) Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care 15(3):R132

    Article  PubMed  PubMed Central  Google Scholar 

  59. Conway DH, Mayall R, Abdul-Latif MS, Gilligan S, Tackaberry C (2002) Randomised controlled trial investigating the influence of intravenous fluid titration using oesophageal Doppler monitoring during bowel surgery. Anaesthesia 57(9):845–849

    Article  CAS  PubMed  Google Scholar 

  60. Mayer J, Boldt J, Mengistu AM, Röhm KD, Suttner S (2010) Goal-directed intraoperative therapy based on autocalibrated arterial pressure waveform analysis reduces hospital stay in high-risk surgical patients: a randomized, controlled trial. Crit Care 14(1):R18

    Article  PubMed  PubMed Central  Google Scholar 

  61. Wakeling HG, McFall MR, Jenkins CS et al (2005) Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 95(5):634–642

    Article  CAS  PubMed  Google Scholar 

  62. Jhanji S, Vivian-Smith A, Lucena-Amaro S, Watson D, Hinds CJ, Pearse RM (2010) Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial. Crit Care 14(4):R151

    Article  PubMed  PubMed Central  Google Scholar 

  63. Noblett SE, Snowden CP, Shenton BK, Horgan AF (2006) Randomized clinical trial assessing the effect of Doppler-optimized fluid management on outcome after elective colorectal resection. Br J Surg 93(9):1069–1076

    Article  CAS  PubMed  Google Scholar 

  64. Donati A, Loggi S, Preiser J‑C et al (2007) Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest 132(6):1817–1824

    Article  PubMed  Google Scholar 

  65. Smetkin AA, Kirov MY, Kuzkov VV et al (2009) Single transpulmonary thermodilution and continuous monitoring of central venous oxygen saturation during off-pump coronary surgery. Acta Anaesthesiol Scand 53(4):505–514

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bockhorn.

Ethics declarations

Interessenkonflikt

B. E. Wellge, C. J. Trepte, C. Zöllner, J. R. Izbicki und M. Bockhorn geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wellge, B.E., Trepte, C.J., Zöllner, C. et al. Perioperatives Volumenmanagement. Chirurg 91, 121–127 (2020). https://doi.org/10.1007/s00104-020-01134-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-020-01134-6

Schlüsselwörter

Keywords

Navigation