Skip to main content
Log in

Chirurgie als pluripotentes Instrument gegen eine metabolische Erkrankung

Was sind die Mechanismen?

Surgery as pluripotent instrument for metabolic disease

What are the mechanisms?

  • Leitthema
  • Published:
Der Chirurg Aims and scope Submit manuscript

Zusammenfassung

Die bariatrische/metabolische Chirurgie stellt derzeit die effektivste Therapie zur dauerhaften Gewichtsreduktion und Verbesserung der mit Adipositas assoziierten metabolischen Begleiterkrankungen wie Diabetes mellitus Typ 2, arterielle Hypertonie, Lipidstoffwechselstörungen und kardiovaskuläre Erkrankungen dar. Trotz kontinuierlich steigender Operationszahlen in Deutschland und weltweit sowie belegter Effektivität sind die genauen Wirkmechanismen der Operationsverfahren jedoch nicht vollständig geklärt. Einer der am häufigsten durchgeführten und am besten untersuchten Eingriffe ist der Roux-en-Y-Magenbypass (RYGB), dessen Wirksamkeit traditionell durch mechanische Nahrungsrestriktion und kalorische Malabsorption begründet wurde. Inzwischen hat sich allerdings gezeigt, dass die zugrunde liegenden Mechanismen weitaus komplexer sind und dass physiologische Prozesse wie beispielsweise veränderte Spiegel verschiedener gastrointestinaler Hormone, ein gesteigerter Energieumsatz und eine modifizierte Zusammensetzung des intestinalen Mikrobioms eine wichtigere Rolle spielen. Nachdem die Verbesserung der metabolischen Begleiterkrankungen lange Zeit als Folgeeffekt der Gewichtsreduktion nach RYGB interpretiert wurde, hat sich inzwischen gezeigt, dass dies zumindest teilweise gewichtsunabhängig zu sein scheint und direkt durch physiologische Veränderungen vermittelt wird. Dieser Artikel soll eine Übersicht zu den potenziellen und aktuell wichtigsten Wirkmechanismen der RYGB-Operation liefern, die sowohl an der Therapie des Übergewichts als auch der adipositasassoziierten metabolischen Begleiterkrankungen beteiligt sind.

Abstract

Bariatric metabolic surgery currently offers the most effective treatment to achieve sustained weight loss and improvement in metabolic comorbidities, such as type 2 diabetes, hypertension, dyslipidemia and cardiovascular diseases. The number of cases performed in Germany and also worldwide is continuously increasing but the underlying mechanisms of bariatric metabolic surgery are still not completely elucidated. Roux-en-Y gastric bypass (RYGB) surgery represents one of the most commonly used and therefore most frequently investigated bariatric metabolic procedures. Traditionally, its effectiveness was attributed to food restriction and malabsorption but in the meantime it has become evident that the underlying postoperative mechanisms of RYGB seem to be much more complex. Potential mechanisms include multiple physiological changes, such as altered levels of gastrointestinal hormones, increased energy expenditure and modified gut microbiota as well as many other factors. This review article therefore aims to offer an up to date overview of relevant mechanisms that improve obesity and its associated comorbidities after RYGB surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Asarian L, Abegg K, Geary N et al (2012) Estradiol increases body weight loss and gut-peptide satiation after roux-en-Y gastric bypass in ovariectomized rats. Gastroenterology 143(2):325–327

    Article  CAS  PubMed  Google Scholar 

  2. Asarian L, Geary N (2006) Modulation of appetite by gonadal steroid hormones. Philos Trans R Soc Lond B Biol Sci 361:1251–1263

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Batterham RL, Cowley MA, Small CJ et al (2002) Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418:650–654

    Article  CAS  PubMed  Google Scholar 

  4. Berthoud HR, Zheng H, Shin AC (2012) Food reward in the obese and after weight loss induced by calorie restriction and bariatric surgery. Ann N Y Acad Sci 1264:36–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Brolin RE, LaMarca LB, Kenler HA et al (2002) Malabsorptive gastric bypass in patients with superobesity. J Gastrointest Surg 6:195–205

    Article  PubMed  Google Scholar 

  6. Buchwald H, Oien DM (2009) Metabolic/bariatric surgery worldwide 2008. Obes Surg 19:1605–1611

    Article  PubMed  Google Scholar 

  7. Bueter M, le Roux CW (2011) Gastrointestinal hormones, energy balance and bariatric surgery. Int J Obes (Lond) 35(Suppl 3):S35–S39

    Google Scholar 

  8. Bueter M, Lowenstein C, Olbers T et al (2010) Gastric bypass increases energy expenditure in rats. Gastroenterology 138:1845–1853

    Article  PubMed  Google Scholar 

  9. Bueter M, Miras AD, Chichger H et al (2011) Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiol Behav 104:709–721

    Article  CAS  PubMed  Google Scholar 

  10. Carrasco F, Papapietro K, Csendes A et al (2007) Changes in resting energy expenditure and body composition after weight loss following Roux-en-Y gastric bypass. Obes Surg 17:608–616

    Article  PubMed  Google Scholar 

  11. Crenn P, Morin MC, Joly F et al (2004) Net digestive absorption and adaptive hyperphagia in adult short bowel patients. Gut 53:1279–1286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Castro Cesar M de, Lima Montebelo MI de, Rasera I Jr et al (2008) Effects of Roux-en-Y gastric bypass on resting energy expenditure in women. Obes Surg 18:1376–1380

    Article  Google Scholar 

  13. Dirksen C, Jorgensen NB, Bojsen-Moller KN et al (2013) Gut hormones, early dumping and resting energy expenditure in patients with good and poor weight loss response after Roux-en-Y gastric bypass. Int J Obes (Lond) 37:1452–1459

    Google Scholar 

  14. Everard A, Lazarevic V, Derrien M et al (2011) Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60:2775–2786

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Flegal KM, Carroll MD, Kit BK et al (2012) Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA 307:491–497

    Article  PubMed  Google Scholar 

  16. Flum DR, Belle SH, King WC et al (2009) Perioperative safety in the longitudinal assessment of bariatric surgery. N Engl J Med 361:445–454

    Article  PubMed  Google Scholar 

  17. Furet JP, Kong LC, Tap J et al (2010) Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59:3049–3057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125:1401–1412

    CAS  PubMed  Google Scholar 

  19. Karastergiou K, Smith SR, Greenberg AS et al (2012) Sex differences in human adipose tissues – the biology of pear shape. Biol Sex Differ 3:13

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kokrashvili Z, Mosinger B, Margolskee RF (2009) Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am J Clin Nutr 90:822S–825S

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Laferrere B, Teixeira J, McGinty J et al (2008) Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J Clin Endocrinol Metab 93:2479–2485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. le Roux CW, Aylwin SJ, Batterham RL et al (2006) Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 243:108–114

    Article  Google Scholar 

  23. le Roux CW, Bueter M, Theis N et al (2011) Gastric bypass reduces fat intake and preference. Am J Physiol Regul Integr Comp Physiol 301:R1057–R1066

    Article  Google Scholar 

  24. le Roux CW, Welbourn R, Werling M et al (2007) Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg 246:780–785

    Article  Google Scholar 

  25. Lefebvre P, Cariou B, Lien F et al (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89:147–191

    Article  CAS  PubMed  Google Scholar 

  26. Ley RE, Backhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ley RE, Turnbaugh PJ, Klein S et al (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023

    Article  CAS  PubMed  Google Scholar 

  28. Li JV, Ashrafian H, Bueter M et al (2011) Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut 60:1214–1223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Liou AP, Paziuk M, Luevano JM Jr et al (2013) Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med 5:178ra141

    Article  Google Scholar 

  30. Mauvais-Jarvis F (2011) Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol Metab 22:24–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Neary NM, Small CJ, Druce MR et al (2005) Peptide YY3-36 and glucagon-like peptide-17–36 inhibit food intake additively. Endocrinology 146:5120–5127

    Article  CAS  PubMed  Google Scholar 

  32. Osto M, Abegg K, Bueter M et al (2013) Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiol Behav 119:92–96

    Article  CAS  PubMed  Google Scholar 

  33. Perfetti R, Zhou J, Doyle ME et al (2000) Glucagon-like peptide-1 induces cell proliferation and pancreatic-duodenum homeobox-1 expression and increases endocrine cell mass in the pancreas of old, glucose-intolerant rats. Endocrinology 141:4600–4605

    Article  CAS  PubMed  Google Scholar 

  34. Pournaras DJ, Glicksman C, Vincent RP et al (2012) The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 153(8):3613–3619

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Pournaras DJ, le Roux CW (2009) After bariatric surgery, what vitamins should be measured and what supplements should be given? Clin Endocrinol (Oxf) 71:322–325

    Google Scholar 

  36. Runkel N, Colombo-Benkmann M, Huttl TP et al (2011) Evidence-based German guidelines for surgery for obesity. Int J Colorectal Dis 26:397–404

    Article  PubMed  Google Scholar 

  37. Ryan KK, Tremaroli V, Clemmensen C et al (2014) FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509:183–188

    Article  CAS  PubMed  Google Scholar 

  38. Seyfried F, le Roux CW, Bueter M (2011) Lessons learned from gastric bypass operations in rats. Obes Facts 4(Suppl 1):3–12

    Article  PubMed  Google Scholar 

  39. Shin AC, Zheng H, Pistell PJ et al (2011) Roux-en-Y gastric bypass surgery changes food reward in rats. Int J Obes (Lond) 35:642–651

    Google Scholar 

  40. Shin AC, Zheng H, Townsend RL et al (2010) Meal-induced hormone responses in a rat model of Roux-en-Y gastric bypass surgery. Endocrinology 151:1588–1597

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Sjöström L, Lindroos AK, Peltonen M et al (2004) Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 351:2683–2693

    Article  PubMed  Google Scholar 

  42. Sjöström L, Narbro K, Sjostrom CD et al (2007) Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 357:741–752

    Article  PubMed  Google Scholar 

  43. Tam CS, Berthoud HR, Bueter M et al (2011) Could the mechanisms of bariatric surgery hold the key for novel therapies? Report from a Pennington Scientific Symposium. Obes Rev 12:984–994

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  45. Ye J, Hao Z, Mumphrey MB et al (2014) GLP-1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am J Physiol Regul Integr Comp Physiol 306:R352–R362

    Article  CAS  PubMed  Google Scholar 

  46. Zhang H, DiBaise JK, Zuccolo A et al (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106:2365–2370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Interessenkonflikt

C. Corteville, M. Fassnacht und M. Bueter geben an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bueter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corteville, C., Fassnacht, M. & Bueter, M. Chirurgie als pluripotentes Instrument gegen eine metabolische Erkrankung. Chirurg 85, 963–968 (2014). https://doi.org/10.1007/s00104-014-2796-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00104-014-2796-9

Schlüsselwörter

Keywords

Navigation