Skip to main content
Log in

Monitoring von Schmerz, Nozizeption und Analgesie unter Allgemeinanästhesie

Relevanz, aktueller wissenschaftlicher Stand und klinische Praxis

Monitoring of pain, nociception, and analgesia under general anesthesia

Relevance, current scientific status, and clinical practice

  • Allgemeinanästhesie
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Zur Vermeidung schädlicher Folgen schmerzhafter Reize ist auch unter Allgemeinanästhesie eine adäquate Analgesie erforderlich. Hierbei kann sowohl Über- als auch Unterdosierung negative Auswirkungen haben. Zur optimalen Dosierung bedarf es eines kontinuierlichen Monitorings der Balance zwischen stattfindender Nozizeption und Analgesie.

Methoden

Diese Übersichtsarbeit beschreibt aktuelle Verfahren zum Nozizeptions- und Analgesiemonitoring sowie deren prinzipielle Unterschiede.

Ergebnisse

Nozizeptionsmonitore erfassen durch schmerzhafte Reize ausgelöste organische Veränderungen im Körper und ermöglichen so das Erkennen von überschießender Nozizeption bei unzureichender Analgesie. Analgesiemonitore erfassen nozizeptionsspezifische organische Veränderungen, die durch spezielle Testreize ausgelöst werden und ermöglichen eine präemptive Anpassung der Analgesie, bevor ein klinischer schmerzhafter Reiz erfolgt. Sie erfordern jedoch die Applikation von Teststimuli. Erste Proof-of-concept-Studien konnten bereits das Potenzial der Verfahren demonstrieren, jedoch ist bisher noch für keine der beiden Monitoring-Varianten ein Effekt auf das klinische Langzeit-Outcome von Patienten belegt.

Schlussfolgerungen

Für den routinemäßigen Einsatz von Nozizeptions- und Analgesiemonitoren in der klinischen Praxis bedarf es großer klinischer Studien mit Nachweis eines positiven Langzeit-Outcome-Effekts. Ohne verlässliche Parameter für Nozizeption und Analgesie konnten solche Untersuchungen bisher noch nicht erfolgen. Die Entwicklung der letzten Jahre stimmt zuversichtlich, dass in nicht allzu ferner Zukunft verlässliche Parameter für Nozizeption und Analgesie vorliegen werden, anhand derer die Langzeit-Outcome-Effekte von Nozizeption und Analgesie untersucht werden können.

Abstract

Background

To avoid negative effects of painful stimuli under general anesthesia, an adequate analgesia is needed. Since both overdosing and underdosing of analgesics may lead to negative consequences, an optimal dosing is crucial, requiring a continuous monitoring of the balance between the ongoing nociception and the level of analgesia.

Methods

This review describes current methods for the monitoring of nociception and analgesia as well as their inherent differences.

Results

Monitors of nociception register organic responses that are triggered through painful stimuli and therefore allow the detection of phases of excessive nociception during inadequate analgesia. In contrast, monitors of analgesia register nociception-specific organic responses that are triggered through test stimuli and allow a preemptive adaption of the level of analgesia, before a painful clinical stimulus is applied, but require the application of test stimuli. Preliminary proof-of-concept studies were able to demonstrate the potential of the here described methods; however, an effect on the clinical outcome of patients has not yet been shown for either of the two types of monitoring.

Conclusions

For the routine application of monitors of nociception and analgesia in daily clinical practice, large clinical studies are necessary, proving a positive outcome effect. Without reliable parameters for nociception and analgesia it was hitherto impossible to perform such studies. The progress made in recent years generates optimism that in the not too distant future the currently available methods to monitor nociception and analgesia might improve to a level of reliability to allow them to be used to investigate the clinical outcome relevance of nociception and analgesia

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Aissou M, Snauwaert A, Dupuis C et al (2012) Objective assessment of the immediate postoperative analgesia using pupillary reflex measurement: a prospective and observational study. Anesthesiology 116:1006–1012. doi:10.1097/ALN.0b013e318251d1fb

    Article  CAS  PubMed  Google Scholar 

  2. Antognini JF, Carstens E (2002) In vivo characterization of clinical anaesthesia and its components. Br J Anaesth 89:156–166. doi:10.1093/bja/aef156

    Article  CAS  PubMed  Google Scholar 

  3. Barvais L, Engelman E, Eba JM et al (2003) Effect site concentrations of remifentanil and pupil response to noxious stimulation. Br J Anaesth 91:347–352

    Article  CAS  PubMed  Google Scholar 

  4. Bonhomme V, Uutela K, Hans G et al (2011) Comparison of the surgical Pleth IndexTM with haemodynamic variables to assess nociception-anti-nociception balance during general anaesthesia. Br J Anaesth 106:101–111. doi:10.1093/bja/aeq291

    Article  CAS  PubMed  Google Scholar 

  5. Boselli E, Bouvet L, Bégou G et al (2015) Prediction of hemodynamic reactivity during total intravenous anesthesia for suspension laryngoscopy using Analgesia/Nociception Index (ANI): a prospective observational study. Minerva Anestesiol 81:288–297

    CAS  PubMed  Google Scholar 

  6. Choo EK, Magruder W, Montgomery CJ et al (2010) Skin conductance fluctuations correlate poorly with postoperative self-report pain measures in school-aged children. Anesthesiology 113:175–182. doi:10.1097/ALN.0b013e3181de6ce9

    Article  PubMed  Google Scholar 

  7. Cividjian A, Martinez JY, Combourieu E et al (2007) Beat-by-beat cardiovascular index to predict unexpected intraoperative movement in anesthetized unparalyzed patients: a retrospective analysis. J Clin Monit Comput 21:91–101. doi:10.1007/s10877-006-9061-9

    Article  CAS  PubMed  Google Scholar 

  8. Constant I, Nghe M-C, Boudet L et al (2006) Reflex pupillary dilatation in response to skin incision and alfentanil in children anaesthetized with sevoflurane: a more sensitive measure of noxious stimulation than the commonly used variables. Br J Anaesth 96:614–619. doi:10.1093/bja/ael073

    Article  CAS  PubMed  Google Scholar 

  9. Ellerkmann RK, Grass A, Hoeft A, Soehle M (2013) The response of the composite variability index to a standardized noxious stimulus during propofol-remifentanil anesthesia. Anesth Analg 116:580–588. doi:10.1213/ANE.0b013e31827ced18

    Article  PubMed  Google Scholar 

  10. Gruenewald M, Herz J, Schoenherr T et al (2015) Measurement of the nociceptive balance by Analgesia Nociception Index and Surgical Pleth Index during sevoflurane-remifentanil anesthesia. Minerva Anestesiol 81:480–489

    CAS  PubMed  Google Scholar 

  11. Gruenewald M, Ilies C, Herz J et al (2013) Influence of nociceptive stimulation on analgesia nociception index (ANI) during propofol–remifentanil anaesthesia. Br J Anaesth 110:1024–1030. doi:10.1093/bja/aet019

    Article  CAS  PubMed  Google Scholar 

  12. Guglielminotti J, Grillot N, Paule M et al (2015) Prediction of movement to surgical stimulation by the pupillary dilatation reflex amplitude evoked by a standardized noxious test. Anesthesiology 122:985–993. doi:10.1097/ALN.0000000000000624

    Article  PubMed  Google Scholar 

  13. Guignard B (2006) Monitoring analgesia. Best Pract Res Clin Anaesthesiol 20:161–180

    Article  PubMed  Google Scholar 

  14. Guignard B, Bossard AE, Coste C et al (2000) Acute opioid tolerance: intraoperative remifentanil increases postoperative pain and morphine requirement. Anesthesiology 93:409–417

    Article  CAS  PubMed  Google Scholar 

  15. Heyse B, Proost JH, Hannivoort LN et al (2014) A response surface model approach for continuous measures of hypnotic and analgesic effect during sevoflurane-remifentanil interaction: quantifying the pharmacodynamic shift evoked by stimulation. Anesthesiology 120:1390–1399. doi:10.1097/ALN.0000000000000180

    Article  CAS  PubMed  Google Scholar 

  16. Kehlet H, Jensen TS, Woolf CJ (2006) Persistent postsurgical pain: risk factors and prevention. Lancet 367:1618–1625. doi:10.1016/S0140-6736(06)68700-X

    Article  PubMed  Google Scholar 

  17. Kehlet H, Wilmore DW (2002) Multimodal strategies to improve surgical outcome. Am J Surg 183:630–641

    Article  PubMed  Google Scholar 

  18. Ledowski T, Averhoff L, Tiong WS, Lee C (2014) Analgesia Nociception Index (ANI) to predict intraoperative haemodynamic changes: results of a pilot investigation. Acta Anaesthesiol Scand 58:74–79. doi:10.1111/aas.12216

    Article  CAS  PubMed  Google Scholar 

  19. Ledowski T, Pascoe E, Ang B et al (2010) Monitoring of intra-operative nociception: skin conductance and surgical stress index versus stress hormone plasma levels. Anaesthesia 65:1001–1006. doi:10.1111/j.1365-2044.2010.06480.x

    Article  CAS  PubMed  Google Scholar 

  20. Ledowski T, Tiong WS, Lee C et al (2013) Analgesia nociception index: evaluation as a new parameter for acute postoperative pain. Br J Anaesth 111:627–629. doi:10.1093/bja/aet111

    Article  CAS  PubMed  Google Scholar 

  21. Lichtner G, Golebiewski A, Schneider MH, von Dincklage F (2015) Introduction and validation of a less painful algorithm to estimate the nociceptive flexion reflex threshold. Brain Res 1608:147–156. doi:10.1016/j.brainres.2015.02.049

    Article  CAS  PubMed  Google Scholar 

  22. Loeser JD, Treede R-D (2008) The Kyoto protocol of IASP basic pain terminology. Pain 137:473–477. doi:10.1016/j.pain.2008.04.025

    Article  PubMed  Google Scholar 

  23. Mathews DM, Clark L, Johansen J et al (2012) Increases in electroencephalogram and electromyogram variability are associated with an increased incidence of intraoperative somatic response. Anesth Analg 114:759–770. doi:10.1213/ANE.0b013e3182455ac2

    Article  PubMed  Google Scholar 

  24. Panchal SJ, Kushnerik V (2002) Multimodal approaches to improve surgical outcome. Tech Reg Anesth Pain Manag 6:70–76. doi:10.1053/trap.2002.122932

    Article  Google Scholar 

  25. Rossi M, Cividjian A, Fevre MC et al (2012) A beat-by-beat, on-line, cardiovascular index, CARDEAN, to assess circulatory responses to surgery: a randomized clinical trial during spine surgery. J Clin Monit Comput 26:441–449. doi:10.1007/s10877-012-9372-y

    Article  CAS  PubMed  Google Scholar 

  26. Sabourdin N, Arnaout M, Louvet N et al (2013) Pain monitoring in anesthetized children: first assessment of skin conductance and analgesia-nociception index at different infusion rates of remifentanil. Paediatr Anaesth 23:149–155. doi:10.1111/pan.12071

    Article  PubMed  Google Scholar 

  27. Storm H, Støen R, Klepstad P et al (2013) Nociceptive stimuli responses at different levels of general anaesthesia and genetic variability. Acta Anaesthesiol Scand 57:89–99

    Article  CAS  PubMed  Google Scholar 

  28. Thee C, Ilies C, Gruenewald M et al (2015) Reliability of the surgical Pleth index for assessment of postoperative pain: a pilot study. Eur J Anaesthesiol 32:44–48

    Article  PubMed  Google Scholar 

  29. Von Dincklage F, Correll C, Schneider MHN et al (2012) Utility of Nociceptive Flexion Reflex Threshold, Bispectral Index, Composite Variability Index and Noxious Stimulation Response Index as measures for nociception during general anaesthesia. Anaesthesia 67:899–905. doi:10.1111/j.1365-2044.2012.07187.x

    Article  Google Scholar 

  30. Von Dincklage F, Hackbarth M, Mager R et al (2010) Monitoring of the responsiveness to noxious stimuli during anaesthesia with propofol and remifentanil by using RIII reflex threshold and bispectral index. Br J Anaesth 104:201–208. doi:10.1093/bja/aep357

    Article  Google Scholar 

  31. Von Dincklage F, Hackbarth M, Schneider M et al (2009) Introduction of a continual RIII reflex threshold tracking algorithm. Brain Res 1260:24–29. doi:10.1016/j.brainres.2009.01.001

    Article  Google Scholar 

  32. Von Dincklage F, Velten H, Rehberg B, Baars JH (2010) Monitoring of the responsiveness to noxious stimuli during sevoflurane mono-anaesthesia by using RIII reflex threshold and bispectral index. Br J Anaesth 104:740–745. doi:10.1093/bja/aeq099

    Article  Google Scholar 

  33. Willer JC (1985) Studies on pain. Effects of morphine on a spinal nociceptive flexion reflex and related pain sensation in man. Brain Res 331:105–114

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. von Dincklage.

Ethics declarations

Interessenkonflikt

F. von Dincklage weist auf folgende Beziehungen hin: Der Autor erhält aktuell Drittmittelförderung für wissenschaftliche Projekte von der Dolosys GmbH und war für diese als Berater tätig. Die Dolosys GmbH ist eine Ausgründung der Charité – Universitätsmedizin Berlin zur Herstellung von Monitoren zur Messung des nozizeptiven Flexorenreflexes.

Additional information

F. von Dincklage ist Mitglied des „Arbeitskreises Wissenschaftlicher Nachwuchs (WAKWIN)“ der DGAI

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Dincklage, F. Monitoring von Schmerz, Nozizeption und Analgesie unter Allgemeinanästhesie. Anaesthesist 64, 758–764 (2015). https://doi.org/10.1007/s00101-015-0080-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-015-0080-0

Schlüsselwörter

Keywords

Navigation