Skip to main content
Log in

Volumentherapie in der Intensivmedizin

Volume replacement in intensive care medicine

  • Intensivmedizin
  • Published:
Der Anaesthesist Aims and scope Submit manuscript

Zusammenfassung

Die Volumensubstitution ist ein wesentlicher Bestandteil der Intensivtherapie. Sowohl die Menge des infundierten Volumens, seine Zusammensetzung als auch der Zeitpunkt der Substitution scheinen die Morbidität und Letalität kritisch kranker Patienten zu beeinflussen. Während eine restriktive Volumenstrategie bei kreislaufinstabilen Patienten das Risiko einer Gewebeminderperfusion mit Gewebehypoxie mit sich bringt, begünstigt eine liberale Volumensubstitution bei intakter Gewebeperfusion eine vermeidbare Hypervolämie mit interstitiellen Ödemen und entsprechenden Organfunktionsstörungen. Bislang konnte angesichts fehlender „outcome“-basierter Evidenz keiner der beiden Strategien ein eindeutiger Vorteil zugeordnet werden. Um dem stark variierenden Sauerstoff- (O2)-Bedarf kritisch kranker Patienten gerecht zu werden, wird daher eine bedarfsadaptierte Volumenstrategie empfohlen, die sich am Nachweis einer gefährdeten Gewebeperfusion und der individuellen Volumenreagibilität orientieren sollte. Aufgrund ihrer zeitabhängigen Effektivität zur Korrektur einer Gewebehypoxie sollte die Vorlast möglichst frühzeitig optimiert werden. Ob hierfür kolloidale oder kristalline Lösungen geeigneter sind, ist weiterhin Gegenstand kontroverser Diskussionen. Ein zeitlich limitierter Einsatz von kolloidalen Lösungen in der initialen Phase der Gewebeminderperfusion scheint jedoch dazu beizutragen, deren größeren Volumeneffekt bei Hypovolämie nutzen zu können und mögliche Nebenwirkungen so weit wie möglich zu vermeiden.

Abstract

Volume substitution represents an essential component of intensive care medicine. The amount of fluid administered, the composition and the timing of volume replacement seem to affect the morbidity and mortality of critically ill patients. Although restrictive volume strategies bear the risk of tissue hypoperfusion and tissue hypoxia in hemodynamically unstable patients liberal strategies favour the development of avoidable hypervolemia with edema and resultant organ dysfunction. However, neither strategy has shown a consistent benefit. In order to account for the heavily varying oxygen demand of critically ill patients, a goal-directed, demand-adapted volume strategy is proposed. Using this strategy, volume replacement should be aligned to the need to restore tissue perfusion and the evidence of volume responsiveness. As the efficiency of volume resuscitation for correction of tissue hypoxia is time-dependent, preload optimization should be completed in the very first hours. Whether colloids or crystalloids are more suitable for this purpose is still controversially discussed. Nevertheless, a temporally limited use of colloids during the initial stage of tissue hypoperfusion appears to represent a strategy which uses the greater volume effect during hypovolemia while minimizing the risks for adverse reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Abuelo JG (2007) Normotensive ischemic acute renal failure. N Engl J Med 357:797–805

    Article  PubMed  CAS  Google Scholar 

  2. Albanese J, Leone M, Garnier F et al (2004) Renal effects of norepinephrine in septic and nonseptic patients. Chest 126:534–539

    Article  PubMed  CAS  Google Scholar 

  3. Allison KP, Gosling P, Jones S et al (1999) Randomized trial of hydroxyethyl starch versus gelatine for trauma resuscitation. J Trauma 47:1114–1121

    Article  PubMed  CAS  Google Scholar 

  4. Bagshaw SM, Bellomo R (2007) The influence of volume management on outcome. Curr Opin Crit Care 13:541–548

    Article  PubMed  Google Scholar 

  5. Balogh Z, McKinley BA, Cocanour CS et al (2003) Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg 138:637–642

    Article  PubMed  Google Scholar 

  6. Barbee RW, Reynolds PS, Ward KR (2010) Assessing shock resuscitation strategies by oxygen debt repayment. Shock 33:113–122

    Article  PubMed  Google Scholar 

  7. Beale RJ, Hollenberg SM, Vincent JL et al (2004) Vasopressor and inotropic support in septic shock: an evidence-based review. Crit Care Med 32:S455-S465

    Article  PubMed  Google Scholar 

  8. Bellomo R, Bonventre J, Macias W et al (2005) Management of early acute renal failure: focus on post-injury prevention. Curr Opin Crit Care 11:542–547

    Article  PubMed  Google Scholar 

  9. Bellomo R, Wan L, May C (2008) Vasoactive drugs and acute kidney injury. Crit Care Med 36:S179-S186

    Article  PubMed  CAS  Google Scholar 

  10. Betrosian AP, Agarwal B, Douzinas EE (2007) Acute renal dysfunction in liver diseases. World J Gastroenterol 13:5552–5559

    PubMed  CAS  Google Scholar 

  11. Bindels AJ, Hoeven JG van der, Meinders AE (1999) Pulmonary artery wedge pressure and extravascular lung water in patients with acute cardiogenic pulmonary edema requiring mechanical ventilation. Am J Cardiol 84:1158–1163

    Article  PubMed  CAS  Google Scholar 

  12. Blasco V, Leone M, Antonini F et al (2008) Comparison of the novel hydroxyethylstarch 130/0.4 and hydroxyethylstarch 200/0.6 in brain-dead donor resuscitation on renal function after transplantation. Br J Anaesth 100:504–508

    Article  PubMed  CAS  Google Scholar 

  13. Bouchard J, Mehta RL (2009) Volume management in continuous renal replacement therapy. Semin Dial 22:146–150

    Article  PubMed  Google Scholar 

  14. Bracco D, Schricker T, Carvalho G (2008) Insulin and pentastarch for severe sepsis. N Engl J Med 358:2072–2075

    PubMed  CAS  Google Scholar 

  15. Brandstrup B, Tonnesen H, Beier-Holgersen R et al (2003) Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg 238:641–648

    Article  PubMed  Google Scholar 

  16. Brienza N, Giglio MT, Marucci M et al (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37:2079–2090

    Article  PubMed  Google Scholar 

  17. Bruegger D, Jacob M, Rehm M et al (2005) Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of guinea pig hearts. Am J Physiol Heart Circ Physiol 289:H1993-H1999

    Article  PubMed  CAS  Google Scholar 

  18. Brunkhorst F, Reinhart K (2008) Authors reply. N Engl J Med 358:2074

    Article  CAS  Google Scholar 

  19. Brunkhorst FM, Engel C, Bloos F et al (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358:125–139

    Article  PubMed  CAS  Google Scholar 

  20. Bundgaard-Nielsen M, Secher NH, Kehlet H (2009) „Liberal“ vs. „restrictive“ perioperative fluid therapy – a critical assessment of the evidence. Acta Anaesthesiol Scand 53:843–851

    Article  PubMed  CAS  Google Scholar 

  21. Bunn F, Trivedi D, Ashraf S (2008) Colloid solutions for fluid resuscitation. Cochrane Database Syst Rev:CD001319

    Google Scholar 

  22. Casutt M, Kristoffy A, Schuepfer G et al (2010) Effects on coagulation of balanced (130/0.42) and non-balanced (130/0.4) hydroxyethyl starch or gelatin compared with balanced Ringer’s solution: an in vitro study using two different viscoelastic coagulation tests ROTEM and SONOCLOT. Br J Anaesth 105:273–281

    Article  PubMed  CAS  Google Scholar 

  23. Cecconi M, Johnston E, Rhodes A (2006) What role does the right side of the heart play in circulation? Crit Care 10(Suppl 3):5

    Article  Google Scholar 

  24. Chappell D, Hofmann-Kiefer K, Jacob M et al (2009) TNF-alpha induced shedding of the endothelial glycocalyx is prevented by hydrocortisone and antithrombin. Basic Res Cardiol 104:78–89

    Article  PubMed  CAS  Google Scholar 

  25. Chappell D, Westphal M, Jacob M (2009) The impact of the glycocalyx on microcirculatory oxygen distribution in critical illness. Curr Opin Anaesthesiol 22:155–162

    Article  PubMed  Google Scholar 

  26. Chawla LS, Zia H, Gutierrez G et al (2004) Lack of equivalence between central and mixed venous oxygen saturation. Chest 126:1891–1896

    Article  PubMed  Google Scholar 

  27. Cittanova ML, Leblanc I, Legendre C et al (1996) Effect of hydroxyethylstarch in brain-dead kidney donors on renal function in kidney-transplant recipients. Lancet 348:1620–1622

    Article  PubMed  CAS  Google Scholar 

  28. Cox CS, Jr., Brennan M, Allen SJ (2000) Impact of hetastarch on the intestinal microvascular barrier during ECLS. J Appl Physiol 88:1374–1380

    PubMed  CAS  Google Scholar 

  29. Cronin RE, Erickson AM, Torrente A de et al (1978) Norepinephrine-induced acute renal failure: a reversible ischemic model of acute renal failure. Kidney Int 14:187–190

    Article  PubMed  CAS  Google Scholar 

  30. Dalfino L, Tullo L, Donadio I et al (2008) Intra-abdominal hypertension and acute renal failure in critically ill patients. Intensive Care Med 34:707–713

    Article  PubMed  Google Scholar 

  31. Dart AB, Mutter TC, Ruth CA et al (2010) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev:CD007594

    Google Scholar 

  32. Davidson IJ (2006) Renal impact of fluid management with colloids: a comparative review. Eur J Anaesthesiol 23:721–738

    Article  PubMed  CAS  Google Scholar 

  33. De Backer D, Heenen S, Piagnerelli M et al (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523

    Article  Google Scholar 

  34. De Backer D, Taccone FS, Holsten R et al (2009) Influence of respiratory rate on stroke volume variation in mechanically ventilated patients. Anesthesiology 110:1092–1097

    Article  Google Scholar 

  35. Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36:296–327

    Article  PubMed  Google Scholar 

  36. Deutsche Gesellschaft für Neurochirurgie (2007) Traumatic brain injury of the adult [authors translation]. Online publication; Arbeitsgemeinschaft der wissenschaftlichen medizinischen Fachgesellschaften (AWMF): http://www.uni-duesseldorf.de/AWMF/ll/008–001.htm, accessed on 26.09.2010

  37. Di Giantomasso D, May CN, Bellomo R (2003) Norepinephrine and vital organ blood flow during experimental hyperdynamic sepsis. Intensive Care Med 29:1774–1781

    Article  Google Scholar 

  38. Dieterich HJ (2003) Recent developments in European colloid solutions. J Trauma 54:S26–S30

    Article  PubMed  CAS  Google Scholar 

  39. Dieterich HJ, Weissmuller T, Rosenberger P et al (2006) Effect of hydroxyethyl starch on vascular leak syndrome and neutrophil accumulation during hypoxia. Crit Care Med 34:1775–1782

    Article  PubMed  CAS  Google Scholar 

  40. Diringer MN (2009) Management of aneurysmal subarachnoid hemorrhage. Crit Care Med 37:432–440

    Article  PubMed  Google Scholar 

  41. Durairaj L, Schmidt GA (2008) Fluid therapy in resuscitated sepsis: less is more. Chest 133:252–263

    Article  PubMed  Google Scholar 

  42. Ekelund A, Reinstrup P, Ryding E et al (2002) Effects of iso- and hypervolemic hemodilution on regional cerebral blood flow and oxygen delivery for patients with vasospasm after aneurysmal subarachnoid hemorrhage. Acta Neurochir (Wien) 144:703–712

    Google Scholar 

  43. Ertmer C, Kohler G, Rehberg S et al (2010) Renal effects of saline-based 10% pentastarch versus 6% tetrastarch infusion in ovine endotoxemic shock. Anesthesiology 112:936–947

    Article  PubMed  Google Scholar 

  44. Ertmer C, Rehberg S, Van Aken H et al (2009) Relevance of non-albumin colloids in intensive care medicine. Best Pract Res Clin Anaesthesiol 23:193–212

    Article  PubMed  CAS  Google Scholar 

  45. Feng X, Yan W, Wang Z et al (2007) Hydroxyethyl starch, but not modified fluid gelatin, affects inflammatory response in a rat model of polymicrobial sepsis with capillary leakage. Anesth Analg 104:624–630

    Article  PubMed  CAS  Google Scholar 

  46. Finfer S, Bellomo R, Boyce N et al (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350:2247–2256

    Article  PubMed  CAS  Google Scholar 

  47. Firth JD, Raine AE, Ledingham JG (1988) Raised venous pressure: a direct cause of renal sodium retention in oedema? Lancet 1:1033–1035

    Article  PubMed  CAS  Google Scholar 

  48. Franz A, Braunlich P, Gamsjager T et al (2001) The effects of hydroxyethyl starches of varying molecular weights on platelet function. Anesth Analg 92:1402–1407

    Article  PubMed  CAS  Google Scholar 

  49. Fries D, Innerhofer P, Klingler A et al (2002) The effect of the combined administration of colloids and lactated Ringer’s solution on the coagulation system: an in vitro study using thrombelastograph coagulation analysis (ROTEG). Anesth Analg 94:1280–1287

    Article  PubMed  CAS  Google Scholar 

  50. Gawlinski A (1998) Can measurement of mixed venous oxygen saturation replace measurement of cardiac output in patients with advanced heart failure? Am J Crit Care 7:374–380

    PubMed  CAS  Google Scholar 

  51. Giglio MT, Marucci M, Testini M et al (2009) Goal-directed haemodynamic therapy and gastrointestinal complications in major surgery: a meta-analysis of randomized controlled trials. Br J Anaesth 103:637–646

    Article  PubMed  CAS  Google Scholar 

  52. Grande PO (2006) The „Lund Concept“ for the treatment of severe head trauma – physiological principles and clinical application. Intensive Care Med 32:1475–1484

    Article  PubMed  Google Scholar 

  53. Grande PO (2008) Time out for albumin or a valuable therapeutic component in severe head injury? Acta Anaesthesiol Scand 52:738–741

    Article  PubMed  Google Scholar 

  54. Hamilton-Davies C, Mythen MG, Salmon JB et al (1997) Comparison of commonly used clinical indicators of hypovolaemia with gastrointestinal tonometry. Intensive Care Med 23:276–281

    Article  PubMed  CAS  Google Scholar 

  55. Hartog C, Bauer M, Reinhart K (2010) Fluid therapy in the critically ill patient – Beliefs and hard evidence in 2010. Anaesthesiol Intensivmed 51:219–231

    Google Scholar 

  56. Hartog C, Reinhart K (2009) Contra: hydroxyethyl starch solutions are unsafe in critically ill patients. Intensive Care Med 35:1337–1342

    Article  PubMed  CAS  Google Scholar 

  57. Hasibeder WR, Dünser MW (2008) Intensive insulin therapy and volume substitution with 10% Hemohes(R) for treatment of patients with severe sepsis: The VISEP trial. Anaesthesist 57:720–722

    Article  CAS  Google Scholar 

  58. Hayes MA, Timmins AC, Yau EH et al (1994) Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med 330:1717–1722

    Article  PubMed  CAS  Google Scholar 

  59. Hiltebrand LB, Kimberger O, Arnberger M et al (2009) Crystalloids versus colloids for goal-directed fluid therapy in major surgery. Crit Care 13:R40

    Article  PubMed  Google Scholar 

  60. Hinder F, Stubbe HD, Van Aken H et al (2003) Early multiple organ failure after recurrent endotoxemia in the presence of vasoconstrictor-masked hypovolemia. Crit Care Med 31:903–909

    Article  PubMed  Google Scholar 

  61. Hoffmann JN, Vollmar B, Laschke MW et al (2002) Hydroxyethyl starch (130 kD), but not crystalloid volume support, improves microcirculation during normotensive endotoxemia. Anesthesiology 97:460–470

    Article  PubMed  CAS  Google Scholar 

  62. Holte K, Foss NB, Andersen J et al (2007) Liberal or restrictive fluid administration in fast-track colonic surgery: a randomized, double-blind study. Br J Anaesth 99:500–508

    Article  PubMed  CAS  Google Scholar 

  63. Huang CC, Fu JY, Hu HC et al (2008) Prediction of fluid responsiveness in acute respiratory distress syndrome patients ventilated with low tidal volume and high positive end-expiratory pressure. Crit Care Med 36:2810–2816

    Article  PubMed  Google Scholar 

  64. Huter L, Simon TP, Weinmann L et al (2009) Hydroxyethylstarch impairs renal function and induces interstitial proliferation, macrophage infiltration and tubular damage in an isolated renal perfusion model. Crit Care 13:R23

    Article  PubMed  Google Scholar 

  65. Hwang SH, Won YS, Yu JS et al (2007) A comparative coagulopathic study for treatment of vasospasm by using low- and high-molecular weight hydroxyethyl starches. J Korean Neurosurg Soc 42:377–381

    Article  PubMed  CAS  Google Scholar 

  66. Jacob M, Bruegger D, Rehm M et al (2007) The endothelial glycocalyx affords compatibility of Starling’s principle and high cardiac interstitial albumin levels. Cardiovasc Res 73:575–586

    Article  PubMed  CAS  Google Scholar 

  67. Jacob M, Bruegger D, Rehm M et al (2006) Contrasting effects of colloid and crystalloid resuscitation fluids on cardiac vascular permeability. Anesthesiology 104:1223–1231

    Article  PubMed  CAS  Google Scholar 

  68. Jacob M, Chappell D (2007) Saline or albumin for fluid resuscitation in traumatic brain injury. N Engl J Med 357:2634–2635

    Article  PubMed  CAS  Google Scholar 

  69. Jacob M, Chappell D (2009) Perioperative fluid management – fiction and facts. Anaesthesiol Intensivmed 50:358–375

    Google Scholar 

  70. Jacob M, Chappell D, Conzen P et al (2008) Small-volume resuscitation with hyperoncotic albumin: a systematic review of randomized clinical trials. Crit Care 12:R34

    Article  PubMed  Google Scholar 

  71. Jaganath L, Rao GS (2008) Traumatic brain injury, albumin and the Lund protocol. Acta Anaesthesiol Scand 52:864

    Article  PubMed  CAS  Google Scholar 

  72. James JH, Luchette FA, McCarter FD et al (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354:505–508

    Article  PubMed  CAS  Google Scholar 

  73. Jones AE, Shapiro NI, Trzeciak S et al (2010) Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA 303:739–746

    Article  PubMed  CAS  Google Scholar 

  74. Jungner M, Grande PO, Mattiasson G et al (2010) Effects on brain edema of crystalloid and albumin fluid resuscitation after brain trauma and hemorrhage in the rat. Anesthesiology 112:1194–1203

    Article  PubMed  Google Scholar 

  75. Katz AM (1988) Influence of altered inotropy and lusitropy on ventricular pressure-volume loops. J Am Coll Cardiol 11:438–445

    Article  PubMed  CAS  Google Scholar 

  76. Kern JW, Shoemaker WC (2002) Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 30:1686–1692

    Article  PubMed  Google Scholar 

  77. Kortbeek JB, Al Turki SA, Ali J et al (2008) Advanced trauma life support, 8th edition, the evidence for change. J Trauma 64:1638–1650

    Article  PubMed  Google Scholar 

  78. Kozek-Langenecker SA, Jungheinrich C, Sauermann W et al (2008) The effects of hydroxyethyl starch 130/0.4 (6%) on blood loss and use of blood products in major surgery: a pooled analysis of randomized clinical trials. Anesth Analg 107:382–390

    Article  PubMed  CAS  Google Scholar 

  79. Kumar A, Anel R, Bunnell E et al (2004) Pulmonary artery occlusion pressure and central venous pressure fail to predict ventricular filling volume, cardiac performance, or the response to volume infusion in normal subjects. Crit Care Med 32:691–699

    Article  PubMed  Google Scholar 

  80. Lennihan L, Mayer SA, Fink ME et al (2000) Effect of hypervolemic therapy on cerebral blood flow after subarachnoid hemorrhage: a randomized controlled trial. Stroke 31:383–391

    PubMed  CAS  Google Scholar 

  81. Lescot T, Abdennour L, Boch AL et al (2008) Treatment of intracranial hypertension. Curr Opin Crit Care 14:129–134

    Article  PubMed  Google Scholar 

  82. Leuschner J, Opitz J, Winkler A et al (2003) Tissue storage of 14C-labelled hydroxyethyl starch (HES) 130/0.4 and HES 200/0.5 after repeated intravenous administration to rats. Drugs R D 4:331–338

    Article  PubMed  CAS  Google Scholar 

  83. Levi M, Jonge E (2007) Clinical relevance of the effects of plasma expanders on coagulation. Semin Thromb Hemost 33:810–815

    Article  PubMed  CAS  Google Scholar 

  84. Levraut J, Ciebiera JP, Chave S et al (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 157:1021–1026

    PubMed  CAS  Google Scholar 

  85. Levy B, Dusang B, Annane D et al (2005) Cardiovascular response to dopamine and early prediction of outcome in septic shock: a prospective multiple-center study. Crit Care Med 33:2172–2177

    Article  PubMed  CAS  Google Scholar 

  86. Lichtwarck-Aschoff M, Zeravik J, Pfeiffer UJ (1992) Intrathoracic blood volume accurately reflects circulatory volume status in critically ill patients with mechanical ventilation. Intensive Care Med 18:142–147

    Article  PubMed  CAS  Google Scholar 

  87. Licker M, De Perrot M, Spiliopoulos A et al (2003) Risk factors for acute lung injury after thoracic surgery for lung cancer. Anesth Analg 97:1558–1565

    Article  PubMed  Google Scholar 

  88. Lobo DN, Bostock KA, Neal KR et al (2002) Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet 359:1812–1818

    Article  PubMed  Google Scholar 

  89. Lobo SM, Orrico SR, Queiroz MM et al (2008) Comparison of the effects of lactated Ringer solution with and without hydroxyethyl starch fluid resuscitation on gut edema during severe splanchnic ischemia. Braz J Med Biol Res 41:634–639

    Article  PubMed  CAS  Google Scholar 

  90. Lowell JA, Schifferdecker C, Driscoll DF et al (1990) Postoperative fluid overload: not a benign problem. Crit Care Med 18:728–733

    Article  PubMed  CAS  Google Scholar 

  91. Malbrain ML, Chiumello D, Pelosi P et al (2005) Incidence and prognosis of intraabdominal hypertension in a mixed population of critically ill patients: a multiple-center epidemiological study. Crit Care Med 33:315–322

    Article  PubMed  Google Scholar 

  92. Marik PE (2004) Renal dose norepinephrine! Chest 126:335–337

    Article  PubMed  CAS  Google Scholar 

  93. Marik PE, Baram M, Vahid B (2008) Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 134:172–178

    Article  PubMed  Google Scholar 

  94. Marjanovic G, Villain C, Timme S et al (2010) Colloid vs. crystalloid infusions in gastrointestinal surgery and their different impact on the healing of intestinal anastomoses. Int J Colorectal Dis 25:491–498

    Article  PubMed  Google Scholar 

  95. Martin GS, Eaton S, Mealer M et al (2005) Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care 9:R74–R82

    Article  PubMed  Google Scholar 

  96. Martin GS, Moss M, Wheeler AP et al (2005) A randomized, controlled trial of furosemide with or without albumin in hypoproteinemic patients with acute lung injury. Crit Care Med 33:1681–1687

    Article  PubMed  CAS  Google Scholar 

  97. Marx G, Cobas MM, Schuerholz T et al (2002) Hydroxyethyl starch and modified fluid gelatin maintain plasma volume in a porcine model of septic shock with capillary leakage. Intensive Care Med 28:629–635

    Article  PubMed  CAS  Google Scholar 

  98. Marx G, Cope T, McCrossan L et al (2004) Assessing fluid responsiveness by stroke volume variation in mechanically ventilated patients with severe sepsis. Eur J Anaesthesiol 21:132–138

    PubMed  CAS  Google Scholar 

  99. Marx G, Pedder S, Smith L et al (2006) Attenuation of capillary leakage by hydroxyethyl starch (130/0.42) in a porcine model of septic shock. Crit Care Med 34:3005–3010

    PubMed  CAS  Google Scholar 

  100. Marx G, Reinhart K (2006) Venous oximetry. Curr Opin Crit Care 12:263–268

    Article  PubMed  Google Scholar 

  101. McIlroy DR, Kharasch ED (2003) Acute intravascular volume expansion with rapidly administered crystalloid or colloid in the setting of moderate hypovolemia. Anesth Analg 96:1572–1577

    Article  PubMed  Google Scholar 

  102. McKendry M, McGloin H, Saberi D et al (2004) Randomised controlled trial assessing the impact of a nurse delivered, flow monitored protocol for optimisation of circulatory status after cardiac surgery. BMJ 329:258–262

    Article  PubMed  Google Scholar 

  103. McKevith JM, Pennefather SH (2010) Respiratory complications after oesophageal surgery. Curr Opin Anaesthesiol 23:34–40

    Article  PubMed  Google Scholar 

  104. Mebazaa A, Gheorghiade M, Pina IL et al (2008) Practical recommendations for prehospital and early in-hospital management of patients presenting with acute heart failure syndromes. Crit Care Med 36:S129–S139

    Article  PubMed  Google Scholar 

  105. Michard F, Alaya S, Zarka V et al (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124:1900–1908

    Article  PubMed  Google Scholar 

  106. Michard F, Boussat S, Chemla D et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138

    PubMed  CAS  Google Scholar 

  107. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121:2000–2008

    Article  PubMed  Google Scholar 

  108. Mitchell JP, Schuller D, Calandrino FS et al (1992) Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am Rev Respir Dis 145:990–998

    PubMed  CAS  Google Scholar 

  109. Mittermayr M, Streif W, Haas T et al (2007) Hemostatic changes after crystalloid or colloid fluid administration during major orthopedic surgery: the role of fibrinogen administration. Anesth Analg 105:905–917

    Article  PubMed  CAS  Google Scholar 

  110. Muench E, Horn P, Bauhuf C et al (2007) Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med 35:1844–1851

    Article  PubMed  Google Scholar 

  111. Mulivor AW, Lipowsky HH (2002) Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol Heart Circ Physiol 283:H1282-H1291

    PubMed  CAS  Google Scholar 

  112. Mullens W, Abrahams Z, Francis GS et al (2009) Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53:589–596

    Article  PubMed  Google Scholar 

  113. Murphy CV, Schramm GE, Doherty JA et al (2009) The importance of fluid management in acute lung injury secondary to septic shock. Chest 136:102–109

    Article  PubMed  Google Scholar 

  114. Myburgh J, Cooper DJ, Finfer S et al (2007) Saline or albumin for fluid resuscitation in patients with traumatic brain injury. N Engl J Med 357:874–884

    Article  PubMed  CAS  Google Scholar 

  115. Neff TA, Doelberg M, Jungheinrich C et al (2003) Repetitive large-dose infusion of the novel hydroxyethyl starch 130/0.4 in patients with severe head injury. Anesth Analg 96:1453–1459

    Article  PubMed  CAS  Google Scholar 

  116. Nisanevich V, Felsenstein I, Almogy G et al (2005) Effect of intraoperative fluid management on outcome after intraabdominal surgery. Anesthesiology 103:25–32

    Article  PubMed  Google Scholar 

  117. Nohé B, Burchard M, Zanke C et al (2002) Endothelial accumulation of hydroxyethyl starch and functional consequences on leukocyte-endothelial interactions. Eur Surg Res 34:364–372

    Article  PubMed  Google Scholar 

  118. Nohé B, Johannes T, Reutershan J et al (2005) Synthetic colloids attenuate leukocyte-endothelial interactions by inhibition of integrin function. Anesthesiology 103:759–767

    Article  PubMed  Google Scholar 

  119. Nohé B (2008) Verfahrensanweisung Volumentherapie. Intranet-Wissensbank, Universitätsklinikum Tübingen: http://wb.med.uni-tuebingen.de

  120. Nunez S, Maisel A (1998) Comparison between mixed venous oxygen saturation and thermodilution cardiac output in monitoring patients with severe heart failure treated with milrinone and dobutamine. Am Heart J 135:383–388

    Article  PubMed  CAS  Google Scholar 

  121. O’Malley CM, Frumento RJ, Hardy MA et al (2005) A randomized, double-blind comparison of lactated Ringer’s solution and 0.9% NaCl during renal transplantation. Anesth Analg 100:1518–1524

    Article  CAS  Google Scholar 

  122. Ortega R, Gines P, Uriz J et al (2002) Terlipressin therapy with and without albumin for patients with hepatorenal syndrome: results of a prospective, nonrandomized study. Hepatology 36:941–948

    PubMed  CAS  Google Scholar 

  123. Osman D, Ridel C, Ray P et al (2007) Cardiac filling pressures are not appropriate to predict hemodynamic response to volume challenge. Crit Care Med 35:64–68

    Article  PubMed  Google Scholar 

  124. Otero RM, Nguyen HB, Huang DT et al (2006) Early goal-directed therapy in severe sepsis and septic shock revisited: concepts, controversies, and contemporary findings. Chest 130:1579–1595

    Article  PubMed  Google Scholar 

  125. Payen D, de Pont AC, Sakr Y et al (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:R74

    Article  PubMed  Google Scholar 

  126. Pearse R, Dawson D, Fawcett J et al (2005) Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial [ISRCTN38797445]. Crit Care 9:R687–R693

    Article  PubMed  Google Scholar 

  127. Pearse RM, Dawson D, Fawcett J et al (2007) The incidence of myocardial injury following post-operative goal directed therapy. BMC Cardiovasc Disord 7:10

    Article  PubMed  Google Scholar 

  128. Perel P, Roberts I (2007) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev:CD000567

    Google Scholar 

  129. Perz S, Uhlig T, Kohl M et al (2010) Low and „supranormal“ central venous oxygen saturation and markers of tissue hypoxia in cardiac surgery patients: a prospective observational study. Intensive Care Med 37:52–9; doi 10.1007/s00134-010-1980-8

    Article  PubMed  CAS  Google Scholar 

  130. Pinsky MR (2006) Protocolized cardiovascular management based on ventricular-arterial coupling. In: Pinsky MR, Payen D (Hrsg) Functional hemodynamic monitoring. Springer, Berlin Heidelberg New York Tokio, S 381–396

  131. Pinsky MR (2007) Hemodynamic evaluation and monitoring in the ICU. Chest 132:2020–2029

    Article  PubMed  Google Scholar 

  132. Polonen P, Ruokonen E, Hippelainen M et al (2000) A prospective, randomized study of goal-oriented hemodynamic therapy in cardiac surgical patients. Anesth Analg 90:1052–1059

    Article  PubMed  CAS  Google Scholar 

  133. Prien T, Backhaus N, Pelster F et al (1990) Effect of intraoperative fluid administration and colloid osmotic pressure on the formation of intestinal edema during gastrointestinal surgery. J Clin Anesth 2:317–323

    Article  PubMed  CAS  Google Scholar 

  134. Pries AR, Secomb TW, Sperandio M et al (1998) Blood flow resistance during hemodilution: effect of plasma composition. Cardiovasc Res 37:225–235

    Article  PubMed  CAS  Google Scholar 

  135. Prowle JR, Echeverri JE, Ligabo EV et al (2010) Fluid balance and acute kidney injury. Nat Rev Nephrol 6:107–115

    Article  PubMed  Google Scholar 

  136. Rackow EC, Falk JL, Fein IA et al (1983) Fluid resuscitation in circulatory shock: a comparison of the cardiorespiratory effects of albumin, hetastarch, and saline solutions in patients with hypovolemic and septic shock. Crit Care Med 11:839–850

    Article  PubMed  CAS  Google Scholar 

  137. Rehm M, Bruegger D, Christ F et al (2007) Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–1906

    Article  PubMed  CAS  Google Scholar 

  138. Rehm M, Haller M, Orth V et al (2001) Changes in blood volume and hematocrit during acute preoperative volume loading with 5% albumin or 6% hetastarch solutions in patients before radical hysterectomy. Anesthesiology 95:849–856

    Article  PubMed  CAS  Google Scholar 

  139. Rehm M, Orth V, Kreimeier U et al (2000) Changes in intravascular volume during acute normovolemic hemodilution and intraoperative retransfusion in patients with radical hysterectomy. Anesthesiology 92:657–664

    Article  PubMed  CAS  Google Scholar 

  140. Rehm M, Zahler S, Lotsch M et al (2004) Endothelial glycocalyx as an additional barrier determining extravasation of 6% hydroxyethyl starch or 5% albumin solutions in the coronary vascular bed. Anesthesiology 100:1211–1223

    Article  PubMed  CAS  Google Scholar 

  141. Reid F, Lobo DN, Williams RN et al (2003) (Ab)normal saline and physiological Hartmann’s solution: a randomized double-blind crossover study. Clin Sci (Lond) 104:17–24

    Google Scholar 

  142. Reinhart K, Brunkhorst FM, Bone HG et al (2010) Prevention, diagnosis, treatment, and follow-up care of sepsis. First revision of the S2 Guidelines of the German Sepsis Society (DSG) and the German Interdisciplinary Association for Intensive and Emergency Care Medicine (DIVI). Anaesthesist 59:347–370

    Article  PubMed  CAS  Google Scholar 

  143. Reinhart K, Brunkhorst FM, Engel C et al (2008) Study protocol of the VISEP study. Response of the SepNet study group. Anaesthesist 57:723–728

    Article  PubMed  CAS  Google Scholar 

  144. Ricci Z, Cruz D, Ronco C (2008) The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int 73:538–546

    Article  PubMed  CAS  Google Scholar 

  145. Richer M, Robert S, Lebel M (1996) Renal hemodynamics during norepinephrine and low-dose dopamine infusions in man. Crit Care Med 24:1150–1156

    Article  PubMed  CAS  Google Scholar 

  146. Rivers E, Nguyen B, Havstad S et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–1377

    Article  PubMed  CAS  Google Scholar 

  147. Rivers E (2006) Fluid-management strategies in acute lung injury – liberal, conservative, or both? N Engl J Med 354:2598–2600

    Article  PubMed  CAS  Google Scholar 

  148. Roberts I, Alderson P, Bunn F et al (2004) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev:CD000567

    Google Scholar 

  149. Roppolo LP, Wigginton JG, Pepe PE (2010) Intravenous fluid resuscitation for the trauma patient. Curr Opin Crit Care 16:283–288

    Article  PubMed  Google Scholar 

  150. Rossaint R, Bouillon B, Cerny V et al (2010) Management of bleeding following major trauma: an updated European guideline. Crit Care 14:R52

    Article  PubMed  Google Scholar 

  151. Sakka SG, Bredle DL, Reinhart K et al (1999) Comparison between intrathoracic blood volume and cardiac filling pressures in the early phase of hemodynamic instability of patients with sepsis or septic shock. J Crit Care 14:78–83

    Article  PubMed  CAS  Google Scholar 

  152. Sakka SG, Klein M, Reinhart K et al (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122:2080–2086

    Article  PubMed  Google Scholar 

  153. Sakka SG, Meier-Hellmann A, Reinhart K (2000) Do fluid administration and reduction in norepinephrine dose improve global and splanchnic haemodynamics? Br J Anaesth 84:758–762

    PubMed  CAS  Google Scholar 

  154. Sakka SG, Ruhl CC, Pfeiffer UJ et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26:180–187

    Article  PubMed  CAS  Google Scholar 

  155. Sakr Y, Payen D, Reinhart K et al (2007) Effects of hydroxyethyl starch administration on renal function in critically ill patients. Br J Anaesth 98:216–224

    Article  PubMed  CAS  Google Scholar 

  156. Sakr Y, Vincent JL, Reinhart K et al (2005) High tidal volume and positive fluid balance are associated with worse outcome in acute lung injury. Chest 128:3098–3108

    Article  PubMed  Google Scholar 

  157. Schabinski F, Oishi J, Tuche F et al (2009) Effects of a predominantly hydroxyethyl starch (HES)-based and a predominantly non HES-based fluid therapy on renal function in surgical ICU patients. Intensive Care Med 35:1539–1547

    Article  PubMed  CAS  Google Scholar 

  158. Schachtrupp A (2009) Influence of volume increase on intra-abdominal pressure. Anaesthesist 58:532–536

    Article  PubMed  CAS  Google Scholar 

  159. Scheingraber S, Rehm M, Sehmisch C et al (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90:1265–1270

    Article  PubMed  CAS  Google Scholar 

  160. Schick MA, Isbary TJ, Schlegel N et al (2010) The impact of crystalloid and colloid infusion on the kidney in rodent sepsis. Intensive Care Med 36:541–548

    Article  PubMed  Google Scholar 

  161. Schiffmann H, Erdlenbruch B, Singer D et al (2002) Assessment of cardiac output, intravascular volume status, and extravascular lung water by transpulmonary indicator dilution in critically ill neonates and infants. J Cardiothorac Vasc Anesth 16:592–597

    Article  PubMed  Google Scholar 

  162. Schortgen F, Girou E, Deye N et al (2008) The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med 34:2157–2168

    Article  PubMed  Google Scholar 

  163. Schortgen F, Lacherade JC, Bruneel F et al (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357:911–916

    Article  PubMed  CAS  Google Scholar 

  164. Schramko A, Suojaranta-Ylinen R, Kuitunen A et al (2010) Hydroxyethylstarch and gelatin solutions impair blood coagulation after cardiac surgery: a prospective randomized trial. Br J Anaesth 104:691–697

    Article  PubMed  CAS  Google Scholar 

  165. Schramko AA, Suojaranta-Ylinen RT, Kuitunen AH et al (2009) Rapidly degradable hydroxyethyl starch solutions impair blood coagulation after cardiac surgery: a prospective randomized trial. Anesth Analg 108:30–36

    Article  PubMed  CAS  Google Scholar 

  166. Schramko AA, Suojaranta-Ylinen RT, Kuitunen AH et al (2010) Comparison of the effect of 6% hydroxyethyl starch and gelatin on cardiac and stroke volume index: a randomized, controlled trial after cardiac surgery. Perfusion 25:283–291

    Article  PubMed  Google Scholar 

  167. Shapiro NI, Howell MD, Talmor D et al (2005) Serum lactate as a predictor of mortality in emergency department patients with infection. Ann Emerg Med 45:524–528

    Article  PubMed  Google Scholar 

  168. Shoemaker WC, Appel PL, Kram HB et al (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186

    Article  PubMed  CAS  Google Scholar 

  169. Sort P, Navasa M, Arroyo V et al (1999) Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med 341:403–409

    Article  PubMed  CAS  Google Scholar 

  170. Sperry JL, Minei JP, Frankel HL et al (2008) Early use of vasopressors after injury: caution before constriction. J Trauma 64:9–14

    Article  PubMed  CAS  Google Scholar 

  171. Sumimoto T, Takayama Y, Iwasaka T et al (1991) Mixed venous oxygen saturation as a guide to tissue oxygenation and prognosis in patients with acute myocardial infarction. Am Heart J 122:27–33

    Article  PubMed  CAS  Google Scholar 

  172. Treib J, Haass A, Pindur G et al (1996) All medium starches are not the same: influence of the degree of hydroxyethyl substitution of hydroxyethyl starch on plasma volume, hemorrheologic conditions, and coagulation. Transfusion 36:450–455

    Article  PubMed  CAS  Google Scholar 

  173. Trof RJ, Sukul SP, Twisk JW et al (2010) Greater cardiac response of colloid than saline fluid loading in septic and non-septic critically ill patients with clinical hypovolaemia. Intensive Care Med 36:697–701

    Article  PubMed  CAS  Google Scholar 

  174. Van Aken H, Jacob M, Westphal M, Zwissler B (2009) Infusion therapy in anesthesiology and intensive care medicine [authors translation]. Anaesthesiol Intensivmed 50:338–345

    Google Scholar 

  175. Van Aken H, Roewer N, Nöldge-Schomburg G et al (2010) Hydroxyethyl starches in intensive care medicine: Status quo and perspectives. Anaesthesiol Intensivmed 51:211–218

    Google Scholar 

  176. Van den Elsen MJ, Leenen LP, Kesecioglu J (2010) Hemodynamic support of the trauma patient. Curr Opin Anaesthesiol 23:269–275

    Article  Google Scholar 

  177. Velmahos GC, Demetriades D, Shoemaker WC et al (2000) Endpoints of resuscitation of critically injured patients: normal or supranormal? A prospective randomized trial. Ann Surg 232:409–418

    Article  PubMed  CAS  Google Scholar 

  178. Verheij J, Lingen A van, Beishuizen A et al (2006) Cardiac response is greater for colloid than saline fluid loading after cardiac or vascular surgery. Intensive Care Med 32:1030–1038

    Article  PubMed  CAS  Google Scholar 

  179. Vidal MG, Ruiz WJ, Gonzalez F et al (2008) Incidence and clinical effects of intra-abdominal hypertension in critically ill patients. Crit Care Med 36:1823–1831

    Article  PubMed  Google Scholar 

  180. Vincent JL, Sakr Y, Sprung CL et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353

    Article  PubMed  Google Scholar 

  181. Waitzinger J, Bepperling F, Pabst G et al (2003) Hydroxyethyl starch (HES) [130/0.4], a new HES specification: pharmacokinetics and safety after multiple infusions of 10% solution in healthy volunteers. Drugs R D 4:149–157

    Article  PubMed  CAS  Google Scholar 

  182. Westphal M, James MF, Kozek-Langenecker S et al (2009) Hydroxyethyl starches: different products – different effects. Anesthesiology 111:187–202

    Article  PubMed  CAS  Google Scholar 

  183. Westphal M, Van Aken H, Rehberg S et al (2009) All colloids are not the same. Anaesthesiol Intensivmed 50:378–381

    Google Scholar 

  184. Wiedemann HP, Wheeler AP, Bernard GR et al (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Article  PubMed  CAS  Google Scholar 

  185. Wiedermann CJ (2004) Hydroxyethyl starch – can the safety problems be ignored? Wien Klin Wochenschr 116:583–594

    Article  PubMed  CAS  Google Scholar 

  186. Wiedermann CJ (2008) Systematic review of randomized clinical trials on the use of hydroxyethyl starch for fluid management in sepsis. BMC Emerg Med 8:1

    Article  PubMed  CAS  Google Scholar 

  187. Williams EL, Hildebrand KL, McCormick SA et al (1999) The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg 88:999–1003

    PubMed  CAS  Google Scholar 

  188. Wills BA, Nguyen MD, Ha TL et al (2005) Comparison of three fluid solutions for resuscitation in dengue shock syndrome. N Engl J Med 353:877–889

    Article  PubMed  Google Scholar 

  189. Wittkowski U, Spies C, Sander M et al (2009) Haemodynamic monitoring in the perioperative phase. Available systems, practical application and clinical data. Anaesthesist 58:764–766

    Article  PubMed  CAS  Google Scholar 

  190. Yazigi A, El Khoury C, Jebara S et al (2008) Comparison of central venous to mixed venous oxygen saturation in patients with low cardiac index and filling pressures after coronary artery surgery. J Cardiothorac Vasc Anesth 22:77–83

    Article  PubMed  Google Scholar 

  191. Zander R (2009) Requirements to be met by optimal volume substitution. Anaesthesiol Intensivmed 50:348–357

    Google Scholar 

  192. Zarychanski R, Turgeon AF, Fergusson DA et al (2009) Renal outcomes and mortality following hydroxyethyl starch resuscitation of critically ill patients: systematic review and meta-analysis of randomized trials. Open Med 3(4):E196–E209. http://www.openmedicine.ca/article/view/29; accessed on 29.08.2010

    Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: B. Nohé hat von der Fa. Fresenius-Kabi Reisekostenerstattung und Unterstützung für wissenschaftliche Projekte erhalten.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nohé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nohé, B., Ploppa, A., Schmidt, V. et al. Volumentherapie in der Intensivmedizin. Anaesthesist 60, 457–473 (2011). https://doi.org/10.1007/s00101-011-1860-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00101-011-1860-9

Schlüsselwörter

Keywords

Navigation