Skip to main content

Advertisement

Log in

LINAC-radiosurgery for nonsecreting pituitary adenomas

Long-term results

LINAC-Radiochirurgie zur Behandlung nicht hormonaktiver Hypophysenadenome

Langzeit-Ergebnisse

  • Original article
  • Published:
Strahlentherapie und Onkologie Aims and scope Submit manuscript

Abstract

Background and purpose

Stereotactic linear accelerator-based radiosurgery (LINAC-RS) is increasingly used for microsurgically inaccessible or recurrent pituitary adenomas. This single-center study evaluates the long-term follow-up after LINAC-RS of nonsecreting pituitary adenomas (NSA).

Patients and methods

Between 1992 and August 2008, 65 patients with NSA were treated. Patient treatment and follow-up were conducted according to a prospective protocol. Indications for LINAC-RS were (1) tumor recurrence or (2) residual tumor. Three patients were treated primarily. For analysis of prognostic factors, patients were grouped according to epidemiological or treatment-associated characteristics.

Results

A total of 61 patients with a follow-up ≥ 12 months (median 83 months, range 15–186 months, longest follow-up of published radiosurgery series) were evaluated with regard to their clinical, radiological, and endocrinological course. The median tumor volume was 3.5 ml (± 4.3 ml, range 0.3–17.3 ml) treated with a median surface and maximum dose of 13.0 Gy and 29.7 Gy, respectively. Local tumor control was achieved in 98%. One patient died of unrelated cause after 36 months and 1 patient developed a radiation-induced seizure disorder. Visual complications did not occur. In 37 of 41 patients (90.2%), pituitary function remained stable. Maximum dose to the pituitary ≤ 16 Gy and female gender were positive prognostic factors for the preservation of pituitary function.

Conclusion

LINAC-RS is a minimally invasive, safe, and effective treatment for recurrent NSA or microsurgically inaccessible residual tumor. LINAC-RS yielded a high rate of local long-term tumor control with a small number of radiation-induced side effects.

Zusammenfassung

Hintergrund und Ziel

Die stereotaktische, Linearbeschleuniger-gestützte Radiochirurgie (LINAC-RS) wird zunehmend zur Behandlung mikrochirurgisch nicht zugänglicher oder rezidivierter Hypophysenadenome angewandt. Die vorliegende Studie evaluiert den Langzeitverlauf nach LINAC-RS von hormoninaktiven Hypophysenadenomen (NSA).

Patienten und Methoden

Zwischen 1992 und August 2008 wurden 65 Patienten mit NSA behandelt. Die Therapie und die Nachsorge wurden entsprechend einem prospektiven Protokoll durchgeführt. Indikationen für LINAC-RS waren (1) Tumorrezidiv oder (2) postoperativer Tumorrest. Drei Patienten wurden primär radiochirurgisch behandelt. Zur Ermittlung prognostischer Faktoren wurden die Patienten entsprechend epidemiologischer und behandlungsabhängiger Eigenschaften gruppiert.

Ergebnisse

61 Patienten mit einem Follow-up  ≥ 12 Monaten (Median 83 Monate, 15–185 Monate; längster Nachbeobachtungszeitraum publizierter Radiochirurgie-Serien) wurden im Hinblick auf den klinischen, den radiologischen und den endokrinologischen Verlauf ausgewertet. Das mediane Tumorvolumen betrug 3,5 ml (± 4,3 ml; 0,3–17,3 ml), welches mit einer medianen Oberflächen-/Maximaldosis von 13,0 Gy/29,7 Gy behandelt wurde (Fig. 4). Bei 98% gelang die lokale Tumorkontrolle (Fig. 2). Eine Patientin verstarb nach 36 Monaten aus einem nicht-assoziierten Grund; ein Patient entwickelte ein strahleninduziertes Anfallsleiden. Therapieassoziierte Sehstörungen traten nicht auf. Bei 37 von 41 Patienten (90,2%) blieb die hypophysäre Funktion unbeeinträchtigt (Fig. 3). Eine Strahlenbelastung der Hypophyse  ≤ 16 Gy und weibliches Geschlecht waren positive prognostische Faktoren für den Erhalt der hypophysären Funktionen (Fig. 1).

Schlussfolgerung

LINAC-RS stellt eine minimal-invasive, sichere und effektive Behandlung für rezidivierte NSA oder mikrochirurgisch nicht zugängliche Tumorreste dar. LINAC-RS erzielte eine hohe Rate lokaler Tumorkontrolle bei einer geringen Zahl radiogener Nebenwirkungen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Astner ST, Theodorou M, Dobrei-Ciuchendea M et al (2010) Tumor shrinkage assessed by volumetric MRI in the long-term follow-up after stereotactic radiotherapy of meningiomas. Strahlenther Onkol 186:423–429

    Article  PubMed  Google Scholar 

  2. Balducci M, Apicella G, Manfrida S et al (2010) Single-arm phase II study of conformal radiation therapy and temozolomide plus fractionated stereotactic conformal boost in high-grade gliomas: final report. Strahlenther Onkol 186:558–564

    Article  PubMed  Google Scholar 

  3. Becker G, Kocher M, Kortmann RD et al (2002) Radiation therapy in the multimodal treatment approach of pituitary adenoma. Strahlenther Onkol 178:173–186

    Article  PubMed  Google Scholar 

  4. Boda-Heggemann J, Lohr F, Wenz F et al (2011) kV cone-beam CT-based IGRT: a clinical review. Strahlenther Onkol 187:284–291

    Article  PubMed  Google Scholar 

  5. Brada M, Rajan B, Traish D et al (1993) The long-term efficacy of conservative surgery and radiotherapy in the control of pituitary adenomas. Clin Endocrinol (Oxf) 38:571–578

    Google Scholar 

  6. Chacko AG, Chandy MJ (1992) Incidental pituitary macroadenomas. Br J Neurosurg 6:233–236

    Article  PubMed  CAS  Google Scholar 

  7. Cho CB., Park HK, Joo WI et al (2009) Stereotactic radiosurgery with the CyberKnife for pituitary adenomas. J Korean Neurosurg Soc 45:157–163

    Article  PubMed  Google Scholar 

  8. Colin P, Jovenin N, Delemer B et al (2005) Treatment of pituitary adenomas by fractionated stereotactic radiotherapy: a prospective study of 110 patients. Int J Radiat Oncol Biol Phys 62:333–341

    Article  PubMed  Google Scholar 

  9. Constine LS, Woolf PD, Cann D et al (1993) Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med 328:87–94

    Article  PubMed  CAS  Google Scholar 

  10. Costello RT (1936) Subclinical adenoma of the pituitary gland. Am J Pathol 12:205–216

    PubMed  CAS  Google Scholar 

  11. Dekkers OM, Pereira AM, Roelfsema F et al (2006) Observation alone after transsphenoidal surgery for nonfunctioning pituitary macroadenoma. J Clin Endocrinol Metab 91:1796–801

    Article  PubMed  CAS  Google Scholar 

  12. Ebersold MJ, Quast LM, Laws ER Jr et al (1986) Long-term results in transsphenoidal removal of nonfunctioning pituitary adenomas. J Neurosurg 64:713–719

    Article  PubMed  CAS  Google Scholar 

  13. Ende G, Treuer H, BoseckeR (1992) Optimization and evaluation of landmark-based image correlation. Phys Med Biol 37:261–271

    Article  PubMed  CAS  Google Scholar 

  14. Engenhart-Cabillic R, Kocher M, Muller RP et al (1999) Guidelines for radiotherapy of pituitary adenomas. German Society of Endocrinology. Dtsch Med Wschr 124:1148–1152

    PubMed  CAS  Google Scholar 

  15. Feigl GC, Bonelli CM, Berghold A, Mokry M (2002) Effects of gamma knife radiosurgery of pituitary adenomas on pituitary function. J Neurosurg 97(5 Suppl):415–421

    PubMed  Google Scholar 

  16. Ferrante E, Ferraroni M, Castrignano T et al (2006) Non-functioning pituitary adenoma database: a useful resource to improve the clinical management of pituitary tumors. Eur J Endocrinol 155:823–829

    Article  PubMed  CAS  Google Scholar 

  17. Henzel M, Hamm K, Sitter H et al (2009) Comparison of stereotactic radiosurgery and fractionated stereotactic radiotherapy of acoustic neurinomas according to 3-D tumor volume shrinkage and quality of life Strahlenther Onkol 185:567–573

    Google Scholar 

  18. Iwai Y, Yamanaka K, Yoshioka K (2005) Radiosurgery for non-functioning pituitary adenomas. Neurosurgery 56:699–705

    Article  PubMed  Google Scholar 

  19. Kajiwara K, Saito K, Yoshikawa K et al (2010) Stereotactic radiosurgery/radiotherapy for pituitary adenomas: a review of recent literature. Neurol Med Chir 50:749–55

    Article  Google Scholar 

  20. Kaplan EL, Meier P (1958) Nonparametric estimation from incomplete observations. J Amer Statist Assn 53:457–481

    Article  Google Scholar 

  21. Karavitaki N, Collison K, Halliday J et al (2007) What is the natural history of nonoperated non-functioning, pituitary adenomas? Clin Endocrinol (Oxf) 67:938–943

    Google Scholar 

  22. Killory BD, Kresl JJ, Wait SC et al (2009) Hypofractionated CyberKnife radiosurgery for perichiasmatic pituitary adenomas: early results. Neurosurgery 64:A19–A25

    Article  PubMed  Google Scholar 

  23. Leenstra JL, Tanaka S, Kline RW et al (2010) Factors associated with endocrine deficits after stereotactic radiosurgery of pituitary adenomas. Neurosurgery 67:27–32

    Article  PubMed  Google Scholar 

  24. Lillehei KO, Kirschman DL, Kleinschmidt-DeMasters BK, Ridgway ECL (1998) Reassessment of the role of radiation therapy in the treatment of endocrine-inactive pituitary macroadenomas. Neurosurgery 43:432–439

    Article  PubMed  CAS  Google Scholar 

  25. Liscák R, Vladyka V, Marek J et al (2007) Gamma knife radiosurgery for endocrine-inactive pituitary adenomas. Acta Neurochir (Wien) 149:999–1006

    Google Scholar 

  26. Maarouf M, El Majdoub F, Bührle C et al (2010) Pineal parenchymal tumors management with interstitial iodine-125 radiosurgery. Strahlenther Onkol 186:127–34

    Article  PubMed  Google Scholar 

  27. Maarouf M, Voges J, Landwehr P et al (2003) Stereotactic linear accelerater-based radiosurgery for the treatment of patients with glomus jugulare tumors. Cancer 97:1093–1098

    Article  PubMed  Google Scholar 

  28. Macdonald DR, Cascino TL, Schold SC, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    PubMed  CAS  Google Scholar 

  29. Meij BP, Lopes MB, Ellegala DB et al (2002) The long-term significance of microscopic dural invasion in 354 patients with pituitary adenomas treated with transsphenoidal surgery. J Neurosurg 96:195–208

    Article  PubMed  Google Scholar 

  30. Milker-Zabel S, Debus J, Thilmann C et al (2001) Fractionated stereotactically guided radiotherapy and radiosurgery in the treatment of functional and nonfunctional adenomas of the pituitary gland. Int J Radiat Oncol Biol Phys 50:1279–1286

    Article  PubMed  CAS  Google Scholar 

  31. Mingione V, Yen CP, Vance ML et al (2006) Gamma surgery in the treatment of nonsecretory pituitary macroadenoma. J Neurosurg 104:876–883

    Article  PubMed  Google Scholar 

  32. Mitsumori M, Shrieve DC, Alexander E III et al (1998) Initial clinical results of LINAC-based stereotactic radiosurgery and stereotactic radiotherapy for pituitary adenomas. Int J Radiat Oncol Biol Phys 42:573–580

    Article  PubMed  CAS  Google Scholar 

  33. Molitch ME (2009) Pituitary tumors: pituitary incidentalomas. Best Pract Res Clin Endocrinol Metab 23:667–675

    Article  PubMed  CAS  Google Scholar 

  34. Mortini P, Losa M, Barzaghi R et al (2005) Results of transsphenoidal surgery in a large series of patients with pituitary adenoma. Neurosurgery 56:1222–1233

    Article  PubMed  Google Scholar 

  35. Pai HH, Thornton A, Katznelson L et al (2001) Hypothalamic/pituitary function following high-dose conformal radiotherapy to the base of skull: demonstration of a dose-effect relationship using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 49:1079–1092

    Article  PubMed  CAS  Google Scholar 

  36. Park KJ, Kano H, Parry PV et al (2011) Long-term outcomes after gamma knife stereotactic radiosurgery for non-functional pituitary adenomas. Neurosurgery 69:1188–1199

    Article  PubMed  Google Scholar 

  37. Petersenn S, Lüdecke D, Fahlbusch R et al (2006) Therapy of pituitary tumors. Dtsch Arztebl 103(8):A-474/B–407

    Google Scholar 

  38. Pollock BE, Cochran J, Natt N et al (2008) Gamma knife radiosurgery for patients with nonfunctioning pituitary adenomas: results from a 15-year experience. Int J Radiat Oncol Biol Phys 70:1325–1329

    Article  PubMed  Google Scholar 

  39. Reinecke M, Allelio B, Saeger W et al (1990) The ‘incidentaloma’ of the pituitary gland. Is neurosurgery required? JAMA 263:2772–2776

    Article  Google Scholar 

  40. Riechert T, Mundinger F (1955) Beschreibung und Anwendung eines Zielgerätes für stereotaktische Hirnoperationen (II. Modell). Acta Neurochir (Wien) 1955(Suppl 3):308–337

    Google Scholar 

  41. Ruge MI, Kocher M, Maarouf M et al (2011) Comparison of stereotactic brachytherapy (125iodine seeds) with stereotactic radiosurgery (LINAC) for the treatment of singular cerebral metastases. Strahlenther Onkol 187:7–14

    Article  PubMed  Google Scholar 

  42. Sturm V, Pastyr O, Schlegel W et al (1983) Stereotactic computer tomography with a modified Riechert-Mundinger device as the basis for integrated stereotactic neuroradiological investigations. Acta Neurochir (Wien) 68:11–17

    Google Scholar 

  43. Teramoto A, Hirakawa K, Sanno N, Osamura RY (1994) Incidental pituitary lesions in 1000 unselected autopsy specimens. Radiology 193:161–164

    PubMed  CAS  Google Scholar 

  44. Treuer U, Treuer H, Hoevels M et al (1998) Computerized optimization of multiple isocenters in stereotactic convergent beam irradiation. Phys Med Biol 43:49–64

    Article  PubMed  CAS  Google Scholar 

  45. Treuer H, Hoevels M, Luyken K et al (2000) On isocentre adjustment and quality control in linear accelerator based radiosurgery with circular collimators and room lasers. Phys Med Biol 45:2331–2342

    Article  PubMed  CAS  Google Scholar 

  46. Tsang RW, Brierley JD, Panzarella T et al (1994) Radiation therapy for pituitary adenoma: treatment outcome and prognostic factors. Int J Radiat Oncol Biol Phys 30:557–565

    PubMed  CAS  Google Scholar 

  47. Vladyka V, Liscák R, Novotny J et al (2003) Radiation tolerance of functioning pituitary tissue in gamma knife surgery for pituitary adenomas. Neurosurgery 52:309–316

    Article  PubMed  Google Scholar 

  48. Voges J, Kocher M, Runge M et al (2006) Linear accelerator radiosurgery for pituitary macroadenomas. A 7-year follow-up study. Cancer 107:1355–1364

    Article  PubMed  Google Scholar 

  49. Voges J, Treuer H, Sturm V et al (1996) Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 36:1055–1063

    Article  PubMed  CAS  Google Scholar 

  50. Voges J, Sturm V, Deuss U et al (1996) LINAC-radiosurgery in pituitary adenomas—preliminary results. Acta Neurochir 65(Suppl):41–43

    CAS  Google Scholar 

  51. Wowra B, Stummer W (2002) Efficacy of gamma knife radiosurgery for nonfunctioning pituitary adenomas: a quantitative follow up with magnetic resonance imaging-based volumetric analysis J Neurosurg 97(5 Suppl):429–432

    Google Scholar 

  52. Yoon SC, Suh TS, Jang HS et al (1998) Clinical results of 24 pituitary macroadenomas with linac-based stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 41:849–53

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The corresponding author states that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.J.R. Runge MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runge, M., Maarouf, M., Hunsche, S. et al. LINAC-radiosurgery for nonsecreting pituitary adenomas. Strahlenther Onkol 188, 319–327 (2012). https://doi.org/10.1007/s00066-011-0052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00066-011-0052-5

Keywords

Schlüsselwörter

Navigation