Skip to main content
Log in

Frühe Optimierung der Antibiotikatherapie durch den schnellen Nachweis von Erregern und Empfindlichkeit

Gesundheitsökonomische Aspekte

Early optimization of antibiotic therapy through rapid detection of pathogens and sensitivity

Health economic aspects

  • Innovationen in der Intensivmedizin
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Einführung

Schwere Infektionen erfordern frühe Optimierung der Antibiotikatherapie. Seit 2016 ermöglicht eine neue Methode Erregerdifferenzierung und Resistenztestung positiver Blutkulturen in weniger als 8 h. Ziel dieser Arbeit war, die ökonomischen Effekte der schnelleren Verfügbarkeit auf nationaler Ebene zu untersuchen und in einem Krankenhaus zu validieren.

Material und Methoden

In einer Literaturrecherche wurden der klinische und ökonomische Nutzen adäquater Therapie sowie die Rate der initial inadäquaten antibiotischen Therapie (IIAT) in der Indikation „Sepsis und Blutstrominfektionen“ ermittelt. Die Mittelwerte der gepoolten Studien wurden mit den Fallzahlen in Deutschland (Datenjahr 2015) für alle Fälle, in denen Sepsispatienten mit codiertem Keim und Intensivaufenthalt zu finden waren, in ein ökonomisches Modell integriert, das anschließend in einem Krankenhaus überprüft wurde.

Ergebnisse

Die Analyse von 14 Studien mit 6408 Patienten ergab eine mittlere Rate von 27,3 % IIAT. Aus 8 Studien (n = 2988) wurde eine durchschnittliche Verweildauer(VWD)-Einsparung von 4,7 Tagen bei adäquater Initialtherapie im Vergleich zu einer IIAT ermittelt. Mit einer VWD-Reduktion von 3,7 Tagen ließen sich im theoretischen Modell pro Fall im Mittel 1539 € einsparen. Eine konservative Variante mit einer IIAT von 20 % und VWD-Einsparungen von 2,5 Tagen ergab noch immer eine durchschnittliche Einsparung von 201 € pro Fall. Von 146 Fällen in der Validierung hatten 68 % eine positive Blutkultur. In 61 % der geprüften Fälle wäre eine Anpassung der Therapie erforderlich gewesen (35 % IIAT, 26 % Deeskalation). Nach Abzug der Kosten für den Test bei 60 Patienten ergaben sich mögliche Einsparungen von insgesamt 122.112 €; pro Fall über 2000 €.

Zusammenfassung

Sowohl die Ergebnisse des ökonomischen Modells als auch die Auswertung in einem Krankenhaus zeigen, dass eine schnelle adäquate Antibiotikatherapie ökonomisch günstig ist. Die Optimierung der antibiotischen Therapie durch einen frühzeitigen Nachweis des Erregers sowie der Empfindlichkeit mittels MHK stellt eine Möglichkeit dar, trotz hoher Kosten für die Diagnostik in der Klinik Einsparungen zu erzielen. Potenziale sollten krankenhausindividuell mittels systematischer Fallreviews ermittelt werden.

Abstract

Introduction

Severe infections require early optimization of antibiotic therapy. Since 2016, antibiotic susceptibility results with minimum inhibitory concentrations (MIC) direct from positive blood cultures are available in less than 8 h using a new diagnostic system. The aim of this study is to investigate the economic effects of a rapid availability of antibiotic susceptibility in Germany and to validate these theoretical results in a German hospital.

Materials and methods

In the context of a literature search, the clinical and economic benefit of an adequate therapy as well as the rate of the initially inadequate antibiotic therapy (IIAT) were determined for sepsis and bloodstream infections. In addition to the weighted average of the pooled studies, the case numbers in Germany (data year 2015) of all DRGs for sepsis patients with coded pathogen and ICU stay were integrated into a theoretical economic model that was subsequently validated in a German hospital.

Results

The analysis of 14 studies with a total of 6408 patients showed an average weighted rate of 27.3% IIAT. From a total of 8 studies (n = 2988), an average weighted length of stay (LOS) saving of 4.7 days was determined with adequate initial therapy compared to an IIAT. In the theoretical model, an average of € 1539 per case could be saved with a possible LOS reduction of 3.7 days. A conservative scenario with an IIAT of 20% and LOS reduction of 2.5 days still resulted in an average saving of € 201 per case. In the hospital-individual model, 68% of 146 cases had a positive blood culture. In 61% of the examined cases an adjustment of the therapy would have been necessary (35% IIAT, 26% de-escalation). After deducting the cost of the test for 60 patients, the total potential savings amounted to € 122,112, which is over 2000 € per patient.

Conclusion

A fast adequate antibiotic therapy was economically advantageous both in the economic model and in the real-life evaluation. The optimization of antibiotic therapy by early pathogen detection and MIC-based susceptibilities represents a possibility to achieve savings despite the high costs for diagnostics in the clinic. Particularly noteworthy is the optimization through de-escalation. The potential for each hospital should be identified through systematic case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1

Literatur

  1. Engelmann L, Bellmann R (2014) Adäquate Antibiotikatherapie auf der Intensivstation. Med Klin Intensivmed Notfmed 109(3):154–155. https://doi.org/10.1007/s00063-013-0301-8

    Article  CAS  PubMed  Google Scholar 

  2. Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A, Corcia-Palomo Y, Fernández-Delgado E, Herrera-Melero I et al (2014) De-escalation of empirical therapy is associated with lower mortality in patients with severe sepsis and septic shock. Intensive Care Med 40(1):32–40. https://doi.org/10.1007/s00134-013-3077-7

    Article  CAS  PubMed  Google Scholar 

  3. Garnacho-Montero J, Gutiérrez-Pizarraya A, Escoresca-Ortega A, Fernández-Delgado E, López-Sánchez JM (2015) Adequate antibiotic therapy prior to ICU admission in patients with severe sepsis and septic shock reduces hospital mortality. Crit Care 19:302. https://doi.org/10.1186/s13054-015-1000-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S et al (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34(6):1589–1596. https://doi.org/10.1097/01.CCM.0000217961.75225.E9

    Article  PubMed  Google Scholar 

  5. Carlet J, Collignon P, Goldmann D, Goossens H, Gyssens IC, Harbarth S et al (2011) Society’s failure to protect a precious resource: antibiotics. Lancet 378(9788):369–371. https://doi.org/10.1016/S0140-6736(11)60401-7

    Article  PubMed  Google Scholar 

  6. Kalkulierte parenterale Initialtherapie bakterieller Erkrankungen bei Erwachsenen - Update 2018. https://www.awmf.org/leitlinien/detail/ll/082-006.html. Zugegriffen: 21. Aug. 2018

  7. Morel CM, Edwards SE, Harbarth S (2017) Preserving the “commons”: addressing the sustainable use of antibiotics through an economic lens. Clin Microbiol Infect 23(10):718–722. https://doi.org/10.1016/j.cmi.2017.08.002

    Article  CAS  PubMed  Google Scholar 

  8. Bauer KA, Perez KK, Forrest GN, Goff DA (2014) Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clin Infect Dis 59(Suppl 3):S134–S145. https://doi.org/10.1093/cid/ciu547

    Article  CAS  PubMed  Google Scholar 

  9. Andes D, Craig WA (2005) Treatment of infections with ESBL-producing organisms: pharmacokinetic and pharmacodynamic considerations. Clin Microbiol Infect 11(Suppl 6):10–17. https://doi.org/10.1111/j.1469-0691.2005.01265.x

    Article  PubMed  Google Scholar 

  10. MacGowan A (2008) Breakpoints for extended-spectrum beta-lactamase-producing Enterobacteriacae: pharmacokinetic/pharmacodynamic considerations. Clin Microbiol Infect 14(Suppl 1):166–168. https://doi.org/10.1111/j.1469-0691.2007.01859.x

    Article  CAS  PubMed  Google Scholar 

  11. Paterson DL (2006) Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Med 119(6 Suppl 1):S20–S28. https://doi.org/10.1016/j.amjmed.2006.03.013 (discussion S62–S70)

    Article  CAS  PubMed  Google Scholar 

  12. Pantel A, Monier J, Lavigne J (2018) Performance of the Accelerate Pheno™ system for identification and antimicrobial susceptibility testing of a panel of multidrug-resistant Gram-negative bacilli directly from positive blood cultures. J Antimicrob Chemother. https://doi.org/10.1093/jac/dky032

    Article  PubMed  Google Scholar 

  13. Pancholi P, Carroll KC, Buchan BW, Chan RC, Dhiman N, Ford B et al (2018) Multicenter evaluation of the Accelerate Phenotest BC kit for rapid identification and phenotypic antimicrobial susceptibility testing using morphokinetic cellular analysis. J Clin Microbiol. https://doi.org/10.1128/JCM.01329-17

    Article  PubMed  PubMed Central  Google Scholar 

  14. Luna CM, Vujacich P, Niederman MS, Vay C, Gherardi C, Matera J et al (1997) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 111(3):676–685

    Article  CAS  PubMed  Google Scholar 

  15. Rello J, Ulldemolins M, Lisboa T, Koulenti D, Mañez R, Martin-Loeches I et al (2011) Determinants of prescription and choice of empirical therapy for hospital-acquired and ventilator-associated pneumonia. Eur Respir J 37(6):1332–1339. https://doi.org/10.1183/09031936.00093010

    Article  CAS  PubMed  Google Scholar 

  16. Wilke M, Grube RF, Bodmann KF (2011) Guideline-adherent initial intravenous antibiotic therapy for hospital-acquired/ventilator-associated pneumonia is clinically superior, saves lives and is cheaper than non guideline adherent therapy. Eur J Med Res 16(7):315–323

    Article  PubMed  PubMed Central  Google Scholar 

  17. Atkins D, Eccles M, Flottorp S, Guyatt GH, Henry D, Hill S et al (2004) Systems for grading the quality of evidence and the strength of recommendations I: critical appraisal of existing approaches The GRADE Working Group. Bmc Health Serv Res 4(1):38. https://doi.org/10.1186/1472-6963-4-38

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J et al (2011) GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64(4):383–394. https://doi.org/10.1016/j.jclinepi.2010.04.026

    Article  PubMed  Google Scholar 

  19. Guyatt GH, Oxman AD, Kunz R, Atkins D, Brozek J, Vist G et al (2011) GRADE guidelines: 2. Framing the question and deciding on important outcomes. J Clin Epidemiol 64(4):395–400. https://doi.org/10.1016/j.jclinepi.2010.09.012

    Article  PubMed  Google Scholar 

  20. Shorr AF, Micek ST, Welch EC, Doherty JA, Reichley RM, Kollef MH (2011) Inappropriate antibiotic therapy in Gram-negative sepsis increases hospital length of stay. Crit Care Med 39(1):46–51. https://doi.org/10.1097/CCM.0b013e3181fa41a7

    Article  CAS  PubMed  Google Scholar 

  21. Tumbarello M, Spanu T, Di Bidino R, Marchetti M, Ruggeri M, Trecarichi EM et al (2010) Costs of bloodstream infections caused by Escherichia coli and influence of extended-spectrum-beta-lactamase production and inadequate initial antibiotic therapy. Antimicrob Agents Chemother 54(10):4085–4091. https://doi.org/10.1128/AAC.00143-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Battle SE, Bookstaver PB, Justo JA, Kohn J, Albrecht H, Al-Hasan MN (2017) Association between inappropriate empirical antimicrobial therapy and hospital length of stay in Gram-negative bloodstream infections: stratification by prognosis. J Antimicrob Chemother 72(1):299–304. https://doi.org/10.1093/jac/dkw402

    Article  CAS  PubMed  Google Scholar 

  23. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH (2000) The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest 118(1):146–155

    Article  CAS  PubMed  Google Scholar 

  24. (2018) Abschlussbericht zur Weiterentwicklung des G‑DRG-Systems und Report Browser. https://www.g-drg.de/G-DRG-System_2018/Abschlussbericht_zur_Weiterentwicklung_des_G-DRG-Systems_und_Report_Browser. Zugegriffen: 31. Juli 2018

  25. (2018) Kalkulationshandbuch. https://www.g-drg.de/Kalkulation2/DRG-Fallpauschalen_17b_KHG/Kalkulationshandbuch. Zugegriffen: 31. Juli 2018

  26. Lodise TP, McKinnon PS, Swiderski L, Rybak MJ (2003) Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis 36(11):1418–1423

    Article  PubMed  Google Scholar 

  27. Micek ST, Welch EC, Khan J, Pervez M, Doherty JA, Reichley RM et al (2010) Empiric combination antibiotic therapy is associated with improved outcome against sepsis due to Gram-negative bacteria: a retrospective analysis. Antimicrob Agents Chemother 54(5):1742–1748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shorr AF, Micek ST, Welch EC, Doherty JA, Reichley RM, Kollef MH (2011) Inappropriate antibiotic therapy in Gram-negative sepsis increases hospital length of stay. Crit Care Med 39(1):46–51. https://doi.org/10.1097/CCM.0b013e3181fa41a7

    Article  CAS  PubMed  Google Scholar 

  29. Menéndez R, Torres A, Reyes S, Zalacain R, Capelastegui A, Aspa J et al (2012) Initial management of pneumonia and sepsis: factors associated with improved outcome. Eur Respir J 39(1):156–162

    Article  PubMed  Google Scholar 

  30. Wawrzeniak IC, Loss SH, Moraes MC, De La Vega FL, Victorino JA (2015) Could a protocol based on early goal-directed therapy improve outcomes in patients with severe sepsis and septic shock in the Intensive Care Unit setting? Indian J Crit Care Med 19(3):159–165. https://doi.org/10.4103/0972-5229.152759

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tellor B, Skrupky LP, Symons W, High E, Micek ST, Mazuski JE (2015) Inadequate source control and inappropriate antibiotics are key determinants of mortality in patients with intra-abdominal sepsis and associated bacteremia. Surg Infect 16(6):785–793

    Article  Google Scholar 

  32. Savage RD, Fowler RA, Rishu AH, Bagshaw SM, Cook D, Dodek P et al (2016) The Effect of Inadequate Initial Empiric Antimicrobial Treatment on Mortality in Critically Ill Patients with Bloodstream Infections: A Multi-Centre Retrospective Cohort Study. PLoS One 11(5):e154944

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abraham W (2016) Going beyond the control of quorum-sensing to combat biofilm infections. Antibiotics (Basel) 5(1):3

    Article  Google Scholar 

  34. Kalich BA, Maguire JM, Campbell-Bright SL, Mehrotra A, Caffey T, Tulu Z et al (2016) Impact of an antibiotic-specific sepsis bundle on appropriate and timely antibiotic administration for severe sepsis in the emergency department. J Emerg Med 50(1):79–88.e1. https://doi.org/10.1016/j.jemermed.2015.09.007

    Article  PubMed  Google Scholar 

  35. Oshima T, Kodama Y, Takahashi W, Hayashi Y, Iwase S, Kurita T et al (2016) Empiric antibiotic therapy for severe sepsis and septic shock. Surg Infect 17(2):210–216. https://doi.org/10.1089/sur.2014.096

    Article  Google Scholar 

  36. Worapratya P, Wanjaroenchaisuk A, Joraluck J, Wuthisuthimethawee P (2016) Success of applying early goal-directed therapy for septic shock patients in the emergency department. Open Access Emerg Med 8:1–6. https://doi.org/10.2147/OAEM.S86129

    Article  PubMed  PubMed Central  Google Scholar 

  37. Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Land GA et al (2013) Integrating rapid pathogen identification and antimicrobial stewardship significantly decreases hospital costs. Arch Pathol Lab Med 137(9):1247–1254. https://doi.org/10.5858/arpa.2012-0651-OA

    Article  PubMed  Google Scholar 

  38. Perez KK, Olsen RJ, Musick WL, Cernoch PL, Davis JR, Peterson LE et al (2014) Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia. J Infect 69(3):216–225. https://doi.org/10.1016/j.jinf.2014.05.005

    Article  PubMed  Google Scholar 

  39. Álvarez R, Viñas-Castillo L, Lepe-Jiménez JA, García-Cabrera E, Cisneros-Herreros JM (2012) Time to positivity of blood culture association with clinical presentation, prognosis and ESBL-production in Escherichia coli bacteremia. Eur J Clin Microbiol Infect Dis 31(9):2191–2195. https://doi.org/10.1007/s10096-012-1554-5

    Article  PubMed  Google Scholar 

  40. Defrance G, Birgand G, Ruppé E, Billard M, Ruimy R, Bonnal C et al (2013) Time-to-positivity-based discrimination between Enterobacteriaceae, Pseudomonas aeruginosa and strictly anaerobic Gram-negative bacilli in aerobic and anaerobic blood culture vials. J Microbiol Methods 93(2):77–79. https://doi.org/10.1016/j.mimet.2013.02.005

    Article  PubMed  Google Scholar 

  41. Lin H, Hsu H, Huang Y, Yang C, Hsu M, Liao C (2016) Time to positivity in blood cultures of adults with nontyphoidal Salmonella bacteremia. J Microbiol Immunol Infect 49(3):417–423. https://doi.org/10.1016/j.jmii.2014.08.004

    Article  PubMed  Google Scholar 

  42. Ning Y, Hu R, Yao G, Bo S (2016) Time to positivity of blood culture and its prognostic value in bloodstream infection. Eur J Clin Microbiol Infect Dis 35(4):619–624. https://doi.org/10.1007/s10096-016-2580-5

    Article  CAS  PubMed  Google Scholar 

  43. Kuti EL, Patel AA, Coleman CI (2008) Impact of inappropriate antibiotic therapy on mortality in patients with ventilator-associated pneumonia and blood stream infection: A meta-analysis. J Crit Care 23(1):91–100. https://doi.org/10.1016/j.jcrc.2007.08.007

    Article  PubMed  Google Scholar 

  44. Davey PG, Marwick C (2008) Appropriate vs. inappropriate antimicrobial therapy. Clin Microbiol Infect 14(Suppl 3):15–21. https://doi.org/10.1111/j.1469-0691.2008.01959.x

    Article  PubMed  Google Scholar 

  45. Chong YP, Bae I, Lee S, Chung J, Jun J, Choo EJ et al (2015) Clinical and economic consequences of failure of initial antibiotic therapy for patients with community-onset complicated intra-abdominal infections. PLoS ONE 10(4):e119956. https://doi.org/10.1371/journal.pone.0119956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang AM, Newton D, Kunapuli A, Gandhi TN, Washer LL, Isip J et al (2013) Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis 57(9):1237–1245. https://doi.org/10.1093/cid/cit498

    Article  CAS  PubMed  Google Scholar 

  47. Galar A, Leiva J, Espinosa M, Guillén-Grima F, Hernáez S, Yuste JR (2012) Clinical and economic evaluation of the impact of rapid microbiological diagnostic testing. J Infect 65(4):302–309. https://doi.org/10.1016/j.jinf.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  48. Patel TS, Kaakeh R, Nagel JL, Newton DW, Stevenson JG (2017) Cost analysis of implementing matrix-assisted laser desorption ionization-time of flight mass spectrometry plus real-time antimicrobial stewardship intervention for bloodstream infections. J Clin Microbiol 55(1):60–67. https://doi.org/10.1128/JCM.01452-16

    Article  PubMed  Google Scholar 

  49. Felsenstein S, Bender JM, Sposto R, Gentry M, Takemoto C, Bard JD (2016) Impact of a rapid blood culture assay for gram-positive identification and detection of resistance markers in a pediatric hospital. Arch Pathol Lab Med 140(3):267–275. https://doi.org/10.5858/arpa.2015-0119-OA

    Article  PubMed  Google Scholar 

  50. Bilir SP, Ferrufino CP, Pfaller MA, Munakata J (2015) The economic impact of rapid Candida species identification by T2Candida among high-risk patients. Future Microbiol 10(7):1133–1144. https://doi.org/10.2217/fmb.15.29

    Article  CAS  PubMed  Google Scholar 

  51. Bauer KA, West JE, Balada-Llasat J, Pancholi P, Stevenson KB, Goff DA (2010) An antimicrobial stewardship program’s impact with rapid polymerase chain reaction methicillin-resistant Staphylococcus aureus/S. aureus blood culture test in patients with S. aureus bacteremia. Clin Infect Dis 51(9):1074–1080. https://doi.org/10.1086/656623

    Article  PubMed  Google Scholar 

  52. Malcolmson C, Ng K, Hughes S, Kissoon N, Schina J, Tilley PA et al (2017) Impact of matrix-assisted laser desorption and ionization time-of-flight and antimicrobial stewardship intervention on treatment of bloodstream infections in hospitalized children. J Ped Infect Dis 6(2):178–186. https://doi.org/10.1093/jpids/piw033

    Article  Google Scholar 

  53. Schentag JJ, Ballow CH, Fritz AL, Paladino JA, Williams JD, Cumbo TJ et al (1993) Changes in antimicrobial agent usage resulting from interactions among clinical pharmacy, the infectious disease division, and the microbiology laboratory. Diagn Microbiol Infect Dis 16(3):255–264

    Article  CAS  PubMed  Google Scholar 

  54. Wang B, Jessamine P, Desjardins M, Toye B, Ramotar K (2013) Direct mecA polymerase chain reaction testing of blood culture bottles growing Gram-positive cocci and the clinical potential in optimizing antibiotic therapy for staphylococcal bacteremia. Diagn Microbiol Infect Dis 75(1):37–41. https://doi.org/10.1016/j.diagmicrobio.2012.09.014

    Article  CAS  PubMed  Google Scholar 

  55. Heenen S, Jacobs F, Vincent J (2012) Antibiotic strategies in severe nosocomial sepsis: Why do we not de-escalate more often? Crit Care Med 40(5):1404–1409. https://doi.org/10.1097/CCM.0b013e3182416ecf

    Article  CAS  PubMed  Google Scholar 

  56. Kollef MH, Micek ST (2016) Editorial commentary: antimicrobial de-escalation: what’s in a name? Clin Infect Dis 62(8):1018–1020. https://doi.org/10.1093/cid/civ1201

    Article  PubMed  Google Scholar 

  57. Lee C, Wang J, Lee C, Hung Y, Hong M, Tang H et al (2017) Clinical benefits of antimicrobial de-escalation in adults with community-onset monomicrobial Escherichia coli, Klebsiella species and Proteus mirabilis bacteremia. Int J Antimicrob Agents 50(3):371–376. https://doi.org/10.1016/j.ijantimicag.2017.03.024

    Article  CAS  PubMed  Google Scholar 

  58. Mushtaq A, Awali RA, Chandramohan S, Krishna A, Biedron C, Jegede O et al (2017) Implementing an antibiotic stewardship program at a long-term acute care hospital in Detroit, Michigan. Am J Infect Control 45(12):e157–e160. https://doi.org/10.1016/j.ajic.2017.07.028

    Article  PubMed  Google Scholar 

  59. Niimura T, Zamami Y, Imai T, Nagao K, Kayano M, Sagara H et al (2018) Evaluation of the benefits of de-escalation for patients with sepsis in the emergency intensive care unit. J Pharm Pharm Sci 21(1):54–59. https://doi.org/10.29173/jpps29737

    Article  PubMed  Google Scholar 

  60. Viasus D, Simonetti AF, Garcia-Vidal C, Niubó J, Dorca J, Carratalà J (2017) Impact of antibiotic de-escalation on clinical outcomes in community-acquired pneumococcal pneumonia. J Antimicrob Chemother 72(2):547–553. https://doi.org/10.1093/jac/dkw441

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wilke.

Ethics declarations

Interessenkonflikt

M. Wilke erhielt Honorare von Accelerate Diagnostics, Inc., Curetis AG, Abbott Diagnostics, Pfizer Pharma PFE GmbH. M. Wilke ist CEO der inspiring-health GmbH und hält Anteile. T. Kast und K. Worf erhielten Fördermittel von Accelerate Diagnostics, Inc. W. Heinlein erhielt Fördermittel von Accelerate Diagnostics, Inc., Curetis AG, Abbott Diagnostics und Pfizer Pharma PFE GmbH. W. Heinlein hält Anteile an der inspiring-health GmbH. K.-F. Bodmann erhielt Honorare von Accelerate Diagnostics, Inc., Abbott, Astellas, Basilea, Bayer, Correvio, Cubist, Infecto Pharm, MSD, Novartis, Pfizer und Thermo-Fisher Scientific.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

G. Heinz, Wien

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilke, M., Worf, K., Heinlein, W. et al. Frühe Optimierung der Antibiotikatherapie durch den schnellen Nachweis von Erregern und Empfindlichkeit. Med Klin Intensivmed Notfmed 115, 420–427 (2020). https://doi.org/10.1007/s00063-020-00680-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-020-00680-5

Schlüsselwörter

Keywords

Navigation