Skip to main content
Log in

Moderne Gerinnungstherapie beim blutenden Schwerverletzten

Faktorengabe nach „Point-of-care“

Modern coagulation management in bleeding trauma patients

Point-of-care guided administration of coagulation factor concentrates and hemostatic agents

  • Übersichten
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Unkontrollierte Blutungen einschließlich traumainduzierter Koagulopathie (TIK) sind nach wie vor die häufigste vermeidbare Todesursache beim Schwerverletzten und rasche Diagnostik und Behandlung sind mit verbessertem Outcome assoziiert. Eine an Zielwerten orientierte individualisierte Therapie („goal-directed therapy“) unter Einschluss von „Point-of-care“(POC)-Verfahren ist möglicherweise der empirischen und verhältnisbasierten Therapie mit Blutprodukten vorzuziehen.

Material und Methode

Selektive Literaturübersicht unter Berücksichtigung aktueller Empfehlungen/Expertenmeinungen zur Gerinnungstherapie bei blutenden Schwerverletzten via individualisierter Therapie („goal-directed therapy“) mit POC-viskoelastischer Substitution (ROTEM®) von Gerinnungsfaktoren und Hämostatika.

Ergebnisse

Die Gabe von Fibrinogenkonzentrat beim blutenden Schwerverletzten ist ab ROTEM®-FIBTEM A10 < 10 mm (FIBTEM A5 < 9 mm; FIBTEM MCF < 12 mm) und erniedrigter EXTEM A10 < 45 mm (EXTEM A5 < 35 mm; EXTEM MCF < 55 mm) zu erwägen; die Gabe von Prothrombinkomplexkonzentrat (PPSB) basierend auf einer verzögerten Gerinnselinitiierung (ROTEM®-EXTEM CT > 80 s). Aussagen zum Monitoring eines Faktor(F)-XIII-Defizits oder zur Therapiesteuerung mit FXIII-Konzentraten sind derzeit nicht möglich. Viskoelastische Testverfahren zeichnen sich durch hohe Sensitivität und Spezifität für den Nachweis einer Hyperfibrinolyse mit therapeutischer Gabe eines Antifibrinolytikums aus.

Schlussfolgerungen

Individualisierte Therapiekonzepte auf Grundlage von POC-viskoelastischen Testverfahren (ROTEM®) bieten eine sinnvolle Alternative zu den verhältnisbasierten Konzepten und sind mit reduziertem Transfusionsbedarf und reduzierter Morbidität vergesellschaftet.

Abstract

Background

Uncontrolled bleeding with trauma-induced coagulopathy (TIC) is still the leading cause of preventable death following severe multiple injury. Rapid diagnosis and treatment are associated with improved outcome. Early individualized goal-directed therapy and the use of point-of-care technology may be superior to empiric and ratio-based therapies with conventional blood products.

Materials and methods

Selective review of the literature considering current recommendations/expert opinion for coagulation management in bleeding trauma patients via individualized goal-directed therapy and the use of viscoelastic point-of-care (ROTEM®)-guided substitution of coagulation factor concentrates and hemostatic agents.

Results

The administration of fibrinogen concentrate in bleeding trauma patients may be considered if ROTEM®-FIBTEM A10 < 10 mm (FIBTEM A5 < 9 mm; FIBTEM MCF < 12 mm) and EXTEM A10 < 45 mm (EXTEM A5 < 35 mm; EXTEM MCF < 55 mm); the administration of prothrombin complex concentrate (PCC) may be considered if signs of delayed coagulation initiation (ROTEM®-EXTEM CT > 80 s). At this stage, no concluding statement can be made for monitoring or treatment guidance with factor XIII by using point-of-care technology. Viscoelastic assays display high sensitivity and specificity for the detection of hyperfibrinolysis with subsequent administration of an antifibrinolytic.

Conclusions

Individualized therapeutic concepts based upon viscoelastic point-of-care (ROTEM®) assays present an alternative to empiric and ratio-based therapies with conventional blood products in bleeding trauma patients and may be associated with reduced need for allogenic blood products and morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Brohi K, Singh J, Heron M, Coats T (2003) Acute traumatic coagulopathy. J Trauma 54(6):1127–1130

    Article  PubMed  Google Scholar 

  2. Brohi K, Cohen MJ, Ganter MT et al (2008) Acute coagulopathy of trauma: Hypoperfusion induces systemic anticoagulation and hyperfibrinolysis. J Trauma 64(5):1211–1217

    Article  PubMed  Google Scholar 

  3. Bundesärztekammer (BÄK) (2009) Querschnitts-Leitlinien (BÄK) zur Therapie mit Blutkomponenten und Plasmaderivaten. http://www.bundesaerztekammer.de/downloads/LeitQuerBlutkomponenten4Aufl.pdf. Zugegriffen: 27. März 2017

    Google Scholar 

  4. Camazine MN, Hemmila MR, Leonard JC et al (2015) Massive transfusion policies at trauma centers participating in the American College of Surgeons Trauma Quality Improvement Program. J Trauma Acute Care Surg 78(6 Suppl 1):S48–S53

    Article  PubMed  Google Scholar 

  5. Chang R, Cardenas JC, Wade CE et al (2016) Advances in the understandig of trauma-induced coagulopathy. Blood 128(8):1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Da Luz LT, Nascimento B, Shankarakutty AK et al (2014) Effect of thromboelastography (TEG®) and rotational thromboelastometry (ROTEM®) on diagnosis of coagulopathy, transfusion guidance and mortality in trauma: Descriptive systematic review. Crit Care 18(5):518

    Article  PubMed  PubMed Central  Google Scholar 

  7. Davenport R, Manson J, De’Ath H et al (2011) Functional definition and characterization of acute traumatic coagulopathy. Crit Care Med 39(12):2652–2658

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dirkmann D, Görlinger K, Peters J (2014) Assessment of early thromboelastometric variables from extrinsically activated assays with and without aprotinin for rapid detection of fibrinolysis. Anesth Analg 119(3):533–542

    Article  CAS  PubMed  Google Scholar 

  9. Dirks J, Jorgensen H, Jensen CH et al (2010) Blood product ratio in acute traumatic coagulopathy: Effect on mortality in a Scandinavian level I trauma centre. Scand J Trauma Resusc Emerg Med 18:65

    Article  PubMed  PubMed Central  Google Scholar 

  10. Etchill E, Sperry J, Zuckerbraun B et al (2016) The confusion continues: Results from an American Association for the Surgery in Trauma survey on massive transfusion practices among United States trauma centers. Transfusion 56(10):2478–2486

    Article  CAS  PubMed  Google Scholar 

  11. Floccard B, Rugeri L, Faure A et al (2012) Early coagulopathy in trauma patients: an on-scene and hospital admission study. Injury 43(1):26–32

    Article  PubMed  Google Scholar 

  12. Gerlach R, Raabe A, Zimmermann M et al (2000) Factor XIII deficiency and postoperative hemorrhage after neurosurgical procedures. Surg Neurol 54:260–264

    Article  CAS  PubMed  Google Scholar 

  13. Gonzales E, Moore EE, Moore HB et al (2016) Goal-directed hemostatic resuscitation of trauma-induced coagulopathy: A pragmatic randomized clinical trial comparing a viscoelastic assay to conventional coagulation assays. Ann Surg 263(6):1051–1059

    Article  Google Scholar 

  14. Görlinger K, Fries D, Dirkmann D et al (2012) Reduction of fresh frozen plasma requirements by perioperative point-of-care coagulation management with early calculated goal-directed therape. Transfus Med Hemother 39:104–113

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grossmann E, Akyol D, Eder L et al (2013) Thromboelastometric detection of clotting factor XIII deficiency in cardiac surgery patients. Transfus Med 23(6):407–415

    Article  CAS  PubMed  Google Scholar 

  16. Gruen RL, Jurkovich GJ, McIntyre LK et al (2006) Patterns of errors contributing to trauma mortality: Lessons learned from 2,594 deaths. Ann Surg 244(3):371–380

    PubMed  PubMed Central  Google Scholar 

  17. Haas T, Spielmann N, Mauch J et al (2012) Reproducibility of thrombelastometry (ROTEM®): Point-of-care versus hospital laboratory performance. Scand J Clin Lab Invest 72(4):313–317

    Article  PubMed  Google Scholar 

  18. Hagemo JS, Stanworth S, Juffermans NP et al (2014) Prevalence, predictors and outcome of hypofibrinogenaemia in trauma: a multicentre observational study. Crit Care 18(2):R52

    Article  PubMed  PubMed Central  Google Scholar 

  19. Harr JN, Moore EE, Ghasabyan A et al (2013) Functional fibrinogen assay indicates that fibrinogen is critical in correcting abnormal clot strength following trauma. Shock 39(1):45–49

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayakawa M, Gando S, Ono Y et al (2015) Fibrinogen level deteriorates before other routine coagulation parameters and massive transfusion in the early phase of severe trauma: a retrospective observational study. Semin Thromb Hemost 41(1):35–42

    Article  CAS  PubMed  Google Scholar 

  21. Hiippala ST, Myllylä GJ, Vahtera EM (1995) Hemostatic factors and replacement of major blood loss with plasma-poor red cell concentrates. Anesth Analg 81(2):360–365

    CAS  PubMed  Google Scholar 

  22. Inaba K, Karamanos E, Lustenberger T et al (2013) Impact of fibrinogen levels on outcomes after acute injury in patients requiring a massive transfusion. J Am Coll Surg 216(2):290–297

    Article  PubMed  Google Scholar 

  23. Inaba K, Rizoli S, Veigas PV et al (2015) Consensus conference on viscoelastic test-based transfusion guidelines for early trauma resuscitation: report of the panel. J Trauma Acute Care Surg 78(6):1220–1229

    Article  PubMed  Google Scholar 

  24. Johansson P, Stensballe J, Olivieri R et al (2014) How I treat patients with massive hemorrhage. Blood 124:3052–3058

    Article  CAS  PubMed  Google Scholar 

  25. Kashuk JL, Moore EE, Sawyer M et al (2010) Primary fibrinolysis is integral in the pathogenesis of the acute coagulopathy of trauma. Ann Surg 252(3):434

    PubMed  Google Scholar 

  26. Khan S, Brohi K, Chana M et al (2014) Hemostatic resuscitation is neither hemostatic nor resuscitative in trauma hemorrhage. J Trauma Acute Care Surg 76(3):561–567

    Article  CAS  PubMed  Google Scholar 

  27. Khan S, Davenport R, Raza I et al (2014) Damage control resuscitation using blood component therapy in standard doses has a limited effect on coagulopathy during trauma hemorrhage. Intensive Care Med 41(2):239–247

    Article  PubMed  CAS  Google Scholar 

  28. Kutcher ME, Redick BJ, McCreery RC et al (2012) Characterization of platelet dysfunction after trauma. J Trauma Acute Care Surg 73(1):13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lang T, von Depka M (2009) Diagnostische Möglichkeiten und Grenzen der Thrombelastometrie/-graphie. Hamostaseologie 26(Suppl 1):S20–S29

    Google Scholar 

  30. Levrat A, Gros A, Rugeri L et al (2008) Evaluation of rotation thrombelastography for the diagnosis of hyperfibrinolysis in trauma patients. Br J Anaesth 100(6):792–797

    Article  CAS  PubMed  Google Scholar 

  31. Lorand L, Losowsky MS, Miloszeewski KJ (1980) Human factor XIII: Fibrin-stabalizing factor. Prog Hemost Thromb 5:245–290

    CAS  PubMed  Google Scholar 

  32. MacLeod JB, Lynn M, McKenney MG et al (2003) Early coagulopathy predicts mortality in trauma. J Trauma 55(1):39–44

    Article  PubMed  Google Scholar 

  33. Maegele M, Lefering R, Yucel N et al (2007) Early coagulopathy in multiple injury: an analysis from the German trauma registry on 8724 patients. Injury 38(3):298–304

    Article  PubMed  Google Scholar 

  34. Maegele M, Schöchl H, Cohen MJ (2014) An update on the coagulopathy of trauma. Shock 41(Suppl 1):21–25

    Article  CAS  PubMed  Google Scholar 

  35. Maegele M, Inaba K, Rizoli S et al (2015) Early viscoelasticity-based coagulation therapy for severely injured bleeding patients : Report of the consensus group on the consensus conference 2014 for formulation of S2k guidelines. Anaesthesist. https://doi.org/10.1007/s00101-015-0040-8

    Article  PubMed  Google Scholar 

  36. Mann KG, Butenas S, Brummel K (2003) The dynamics of thrombin formation. Arterioscler Thromb Vasc Biol 23:17–25

    Article  CAS  PubMed  Google Scholar 

  37. Moore HB, Moore EE, Gonzalez E et al (2014) Hyperfibrinolysis, physiologic fibrinolysis, and fibrinolysis shutdown: The spectrum of postinjury fibrinolysis and relevance to antifibrinolytic therapy. J Trauma Acute Care Surg 77(6):811–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Moore EE, Moore HB, Gonzalez E et al (2016) Rationale for the selective administration of tranexamic acid to inhibit fibrinolysis in the severely injured patient. Transfusion 56:S110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nienaber U, Innerhofer P, Westermann I et al (2011) The impact of fresh frozen plasma vs coagulation factor concentrates on morbidity and mortality in trauma-associated haemorrhage and massive transfusion. Injury 42(7):697–701

    Article  PubMed  Google Scholar 

  40. Raza I, Davenport R, Rourke C et al (2013) The incidence and magnitude of fibrinolytic activation in trauma patients. J Thromb Haemost 11(2):307–314

    Article  CAS  PubMed  Google Scholar 

  41. Rossaint R, Bouillon B, Cerny V et al (2016) The European guideline on management of major bleeding and coagulopathy following trauma: Fourth edition. Crit Care 20(1):100

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rourke C, Curry N, Khan S et al (2012) Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost 10(7):1342–1351

    Article  CAS  PubMed  Google Scholar 

  43. Rugeri L, Levrat A, David JS et al (2007) Diagnosis of early coagulation abnormalities in trauma patients by rotation thrombelastography. J Thromb Haemost 5(2):289–295

    Article  CAS  PubMed  Google Scholar 

  44. S3 Leitlinie Polytrauma/Schwerverletzten-Behandlung AWMF Register-Nr. 012/019 (Zugriff: 27 März 2017 http://www.awmf.org.leitlinien/II/012-019.html)

  45. Schäfer N, Driessen A, Fröhlich M et al (2015) Diversity in clinical management and protocols for the treatment of major bleeding trauma patients across European level I trauma centres. Scand J Trauma Resusc Emerg Med 23:74

    Article  PubMed  PubMed Central  Google Scholar 

  46. Schöchl H, Frietsch T, Pavelka M et al (2009) Hyperfibrinolysis after major trauma: Differential diagnosis of lysis patterns and prognostic value of thrombelastometry. J Trauma 67(1):125–131

    Article  PubMed  Google Scholar 

  47. Schöchl H, Forster L, Woidke R et al (2010) Use of rotation thromboelastometry (ROTEM®) to achieve successful treatment of polytrauma with fibrinogen concentrate and prothrombin complex concentrate. Anaesthesia 65(2):199–203

    Article  PubMed  Google Scholar 

  48. Schöchl H, Nienaber U, Maegele M et al (2011) Transfusion in trauma: Thromboelastometry-guided coagulation factor concentrate-based therapy versus standard fresh frozen plasma-based therapy. Crit Care 15(2):R83

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schöchl H, Schlimp C, Voelkel W (2012) Goal-directed coagulation management in trauma-related bleeding. Shock 38(4):32–43

    Google Scholar 

  50. Schöchl H, Maegele M, Solomon C et al (2012) Early and individualized goal-directed therapy for trauma-induced coagulopathy. Scand J Trauma Resusc Emerg Med 20:15

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schöchl H, Maegele M, Voelckel W (2016) Fixed ratio versus goal-directed therapy in trauma. Curr Opin Anaesthesiol 29(2):234–244

    Article  PubMed  Google Scholar 

  52. Schoeneberg C, Schilling M, Hussmann B et al (2016) Preventable and potentially preventable deaths in severely injured patients: A retrospective analysis including patterns of errors. Eur J Trauma Emerg Surg. https://doi.org/10.1007/s00068-016-0670-9

    Article  PubMed  Google Scholar 

  53. Solomon C, Traintinger S, Ziegler B et al (2011) Platelet function following trauma: a multiple electrode aggregometry study. Thromb Haemost 106(2):322–330

    CAS  PubMed  Google Scholar 

  54. Stensballe J, Ostrowski SR, Johansson PI (2014) Viscoelastic guidance of resuscitation. Curr Opin Anaesthesiol 27(2):212–218

    Article  PubMed  Google Scholar 

  55. Tapia NM, Chang A, Norman M et al (2013) TEG-guided resuscitation is superior to standardized MTP resuscitation in massively transfused penetrating trauma patients. J Trauma Acute Care Surg 74(2):378–385

    Article  CAS  PubMed  Google Scholar 

  56. Teixeira PG, Inaba K, Hadjizacharia P et al (2007) Preventable or potentially preventable mortality at a mature trauma center. J Trauma 63(6):1228–1346

    Article  Google Scholar 

  57. Theusinger OM, Stein P, Levy JH (2015) Point of care and factor concentrate-based coagulation algorithms. Transfus Med Hemother 42(2):115–121

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vrettou CS, Stravrinou LH, Halikias S et al (2010) Factor XIII deficiency as a potential as a potential cause of supratentorial haemorrhage after posterior fossa surgery. Acta Neurochir (Wien) 152:529–532

    Article  Google Scholar 

  59. Weber CF, Jambor C, Marquardt M et al (2008) Thrombelastometric detection of factor XIII deficiency. Anaesthesist 57(5):487–490

    Article  CAS  PubMed  Google Scholar 

  60. Weber C, Sanders JO, Friedrich K et al (2011) Stellenwert der Thromelastometrie für das Monitoring von Faktor XIII. Prospektive Observationsstudie bei neurochirurgischen Patienten. Hamostaseologie 31:111–117

    Article  CAS  PubMed  Google Scholar 

  61. Wikkelsø A, Wetterslev J, Møller AM, Afshari A (2016) Thromboelastography (TEG) or thromboelastometry (ROTEM) to monitor haemostatic treatment versus usual care in adults or children with bleeding. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD007871.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  62. Whiting P, Al M, Westwood M et al (2015) Viscoelastic point-of-care tsting to assist with the disgnosis, management and monitoring of haemostasis: A systematic reviwe and cost-effectiveness analysis. Health Technol Assess 19(58):1–228

    Article  PubMed  PubMed Central  Google Scholar 

  63. Maegele M (2016) Unkritischer Gebrauch von Tranexamsäure bei Traumapatienten. Unfallchirurg 119:967–972

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Maegele.

Ethics declarations

Interessenkonflikt

M. Maegele gibt an, Honorare für Vorträge und Teilnahmen an Experten- und Beratungsgremien sowie finanzielle Unterstützungen zur Teilnahme an Kongressen von Astra Zeneca, Bayer, Biotest, CSL Behring, LFB Biomedicaments France und TEM International/IL Werfen erhalten zu haben.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Buerke, Siegen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maegele, M. Moderne Gerinnungstherapie beim blutenden Schwerverletzten. Med Klin Intensivmed Notfmed 114, 400–409 (2019). https://doi.org/10.1007/s00063-017-0337-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-017-0337-2

Schlüsselwörter

Keywords

Navigation