Skip to main content
Log in

Boliden auf der Intensivstation

Wie viel Antibiotika verbraucht Ihre Nierenersatztherapie pro Tag?

Hot rods in the ICU

What is the antibiotic mileage of your renal replacement therapy?

  • Übersichten
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Überrascht wären wir wohl kaum, wenn unser Auto auf 100 km mehr verbraucht, als es der Hersteller angibt. Je nach Fahrstrecke, unserem Fahrverhalten und der Größe der Fahrgemeinschaft weicht der reale Kraftstoffverbrauch teils erheblich von den Herstellerangaben ab. Sobald aber die Autotür hinter uns ins Schloss fällt und sich die Pforte zur Intensivstation öffnet, scheinen wir all dies wieder zu verdrängen. Wir gehen zu Unrecht davon aus, dass die Boliden der Nierenersatztherapie, immer gleich gut entgiften und immer die gleiche Menge Antiinfektiva eliminieren, egal ob wir mit ihnen Vollgasblutwäsche betreiben oder sehr zurückhaltend im Schonwaschgang fahren. Anders als bei den Katecholaminen, deren Wirkung wir vom intensivmedizinischen Armaturenbrett in Form des invasiv gemessenen arteriellen Mitteldrucks direkt ablesen können, fehlt auch auf modernen Intensivstationen der Antibiotikaverbrauchsanzeiger. In der nachfolgenden Übersicht versuchen wir basale pharmakokinetische und pharmakodynamische Prinzipien zu erläutern, die es erlauben, Antibiotika insbesondere bei Patienten, die einer Nierenersatztherapie bedürfen, optimal zu dosieren. Moderne Hybridmodelle, also die Kombination von Nierenersatztherapie mit extrakorporaler Lungenunterstützung oder Adsorbertechnologien zur Entfernung von Zytokinen oder Bakterien, werden in Bezug auf den Einfluss auf die Elimination von Antiinfektiva abgehandelt. Eingehend besprechen wir das Problem der Körperdimensionen und der Körperzusammensetzung, die für die Initial- und Erhaltungsdosis von Antiinfektiva relevant ist. Abschließend erläutern wir, warum aus Sicht der Autoren eine zeitnahe zuverlässige Verfügbarkeit des therapeutischen „drug monitoring“ unabdingbar erscheint, perspektivisch sicherlich mit „point auf care“-Geräten am Patientenbett.

Abstract

We would neither be disappointed nor upset if the gas mileage on the sticker of a car didn’t match our personal, real-life fuel consumption. Depending on our daily route to work, our style of accelerating and the number of passengers in our carpool, the gas mileage will vary. As soon as the falcon wing door of our car is closed and entrance to the ICU is granted, we tend to forget all of this, even though another hot rod is waiting there for us. Renal replacement therapy is like a car; it fulfills goals, such as the removal of uremic toxins and accumulated fluids, but it also “consumes” (removes) antibiotics. Unlike catecholamines, where we have the mean arterial pressure on our ICU dashboard, we do not have a gauge to measure antibiotic “consumption”, i.e. elimination by renal replacement therapy. This manuscript describes the principles and basic knowledge to improve dosing of antibiotics in critically ill patients undergoing renal replacement therapy. As in modern cars, we briefly touch on hybrid therapies combining renal replacement therapy with extracorporeal lung support or adsorbent technologies that remove cytokines or bacteria. Further, the importance of considering body size and body composition is addressed, especially for choosing the right initial dose of antibiotics. Lastly we point out the dire need to increase the availability of timely and affordable therapeutic drug monitoring on the most commonly used antiinfectives, ideally using point-of-care devices at the bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2

Literatur

  1. Kielstein JT (2014) Medikamentendosierung unter extrakorporaler Therapie. Med Klin Intensivmed Notfmed 109:348–353

    Article  CAS  Google Scholar 

  2. Oppert M (2016) Der septische Patient. Med Klin Intensivmed Notfmed 111:290–294

    Article  CAS  Google Scholar 

  3. Welte T (2016) Die schwere Pneumonie auf der Intensivstation. Med Klin Intensivmed Notfmed 111:279–289

    Article  CAS  Google Scholar 

  4. Maus S, Holch C, Czock D, Thalhammer F, Keller F, Hartmann B (2010) Questionnaire surveying nephrologists on drug dose adjustment in patients with impaired kidney function. Wien Klin Wochenschr 122:479–485

    Article  Google Scholar 

  5. Eyler RF, Mueller BA (2010) Antibiotic pharmacokinetic and pharmacodynamic considerations in patients with kidney disease. Adv Chronic Kidney Dis 17:392–403

    Article  Google Scholar 

  6. Roger C, Wallis SC, Muller L, Saissi G, Lipman J, Lefrant JY, Roberts JA (2016) Influence of renal replacement modalities on amikacin population pharmacokinetics in critically ill patients on continuous renal replacement therapy. Antimicrob Agents Chemother. doi:10.1128/AAC.00828-16

    Article  PubMed Central  Google Scholar 

  7. Roberts JA, Field J, Visser A, Whitbread R, Tallot M, Lipman J, Kirkpatrick CM (2010) Using population pharmacokinetics to determine gentamicin dosing during extended daily diafiltration in critically ill patients with acute kidney injury. Antimicrob Agents Chemother 54:3635–3640

    Article  CAS  Google Scholar 

  8. Hoefer D, Mecheels S (2004) I‑wear for health care and wellness – state of the art and future possibilities. Stud Health Technol Inform 108:70–74

    Google Scholar 

  9. Hanley MJ, Abernethy DR, Greenblatt DJ (2010) Effect of obesity on the pharmacokinetics of drugs in humans. Clin Pharmacokinet 49:71–87

    Article  CAS  Google Scholar 

  10. Brill MJ, Diepstraten J, van RA, van KS, van den Anker JN, Knibbe CA (2012) Impact of obesity on drug metabolism and elimination in adults and children. Clin Pharmacokinet 51:277–304

    Article  CAS  Google Scholar 

  11. Green B, Duffull SB (2004) What is the best size descriptor to use for pharmacokinetic studies in the obese? Br J Clin Pharmacol 58:119–133

    Article  Google Scholar 

  12. Lin H, Yeh DD, Levine AR (2016) Daily vancomycin dose requirements as a continuous infusion in obese versus non-obese SICU patients. Crit Care 20:205

    Article  Google Scholar 

  13. Janson B, Thursky K (2012) Dosing of antibiotics in obesity. Curr Opin Infect Dis 25:634–649

    Article  CAS  Google Scholar 

  14. Kaufmann J (2010) Pädiatrisches Notfalllineal. Dtsch Arztebl 107(18):A-873 / B‑765 / C‑753

    Google Scholar 

  15. Kielstein JT, Tolk S, Hafer C, Heiden A, Wiesner O, Kuhn C, Hadem J, Hoeper MM, Fischer S (2011) Effect of acute kidney injury requiring extended dialysis on 28 day and 1 year survival of patients undergoing interventional lung assist membrane ventilator treatment. BMC Nephrol 12:15

    Article  Google Scholar 

  16. Kielstein JT, Heiden AM, Beutel G, Gottlieb J, Wiesner O, Hafer C, Hadem J, Reising A, Haverich A, Kuhn C, Fischer S (2013) Renal function and survival in 200 patients undergoing ECMO therapy. Nephrol Dial Transplant 28:86–90

    Article  Google Scholar 

  17. Forster C, Schriewer J, John S, Eckardt KU, Willam C (2013) Low-flow CO2 removal integrated into a renal-replacement circuit can reduce acidosis and decrease vasopressor requirements. Crit Care 17:R154

    Article  Google Scholar 

  18. Strunk AK, Ciesek S, Schmidt JJ, Kuhn C, Hoeper MM, Welte T, Kielstein JT (2016) Single- and multiple-dose pharmacokinetics of ethambutol and rifampicin in a tuberculosis patient with acute respiratory distress syndrome undergoing extended daily dialysis and ECMO treatment. Int J Infect Dis 42:1–3

    Article  CAS  Google Scholar 

  19. Shekar K, Roberts JA, Smith MT, Fung YL, Fraser JF (2013) The ECMO PK Project: an incremental research approach to advance understanding of the pharmacokinetic alterations and improve patient outcomes during extracorporeal membrane oxygenation. BMC Anesthesiol 13:7

    Article  Google Scholar 

  20. Trager K, Schutz C, Fischer G, Schroder J, Skrabal C, Liebold A, Reinelt H (2016) Cytokine Reduction in the Setting of an ARDS-Associated Inflammatory Response with Multiple Organ Failure. Case Rep Crit Care 2016:9852073. doi:10.1155/2016/9852073

    Article  PubMed Central  Google Scholar 

  21. Carlier M, Carrette S, Roberts JA, Stove V, Verstraete A, Hoste E, Depuydt P, Decruyenaere J, Lipman J, Wallis SC, De Waele JJ (2013) Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care 17:R84

    Article  Google Scholar 

  22. Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Kaukonen KM, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Lipman J (2014) DALI: Defining Antibiotic Levels in Intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. doi:10.1093/cid/ciu027

    Article  PubMed Central  Google Scholar 

  23. Wong G, Brinkman A, Benefield RJ, Carlier M, De Waele JJ, El HN, Frey O, Harbarth S, Huttner A, McWhinney B, Misset B, Pea F, Preisenberger J, Roberts MS, Robertson TA, Roehr A, Sime FB, Taccone FS, Ungerer JP, Lipman J, Roberts JA (2014) An international, multicentre survey of beta-lactam antibiotic therapeutic drug monitoring practice in intensive care units. J Antimicrob Chemother. doi:10.1093/jac/dkt523

    Article  Google Scholar 

  24. Rybak MJ, Lomaestro BM, Rotschafer JC, Moellering RC Jr., Craig WA, Billeter M, Dalovisio JR, Levine DP (2009) Therapeutic monitoring of vancomycin in adults summary of consensus recommendations from the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Pharmacotherapy 29:1275–1279

    Article  CAS  Google Scholar 

  25. Kullar R, Davis SL, Taylor TN, Kaye KS, Rybak MJ (2012) Effects of targeting higher vancomycin trough levels on clinical outcomes and costs in a matched patient cohort. Pharmacotherapy 32:195–201

    Article  Google Scholar 

  26. Kane SL, Weber RJ, Dasta JF (2003) The impact of critical care pharmacists on enhancing patient outcomes. Intensive Care Med 29:691–698

    Article  Google Scholar 

  27. Jiang SP, Zhu ZY, Ma KF, Zheng X, Lu XY (2013) Impact of pharmacist antimicrobial dosing adjustments in septic patients on continuous renal replacement therapy in an intensive care unit. Scand J Infect Dis 45:891–899

    Article  Google Scholar 

  28. Sanavio B, Krol S (2015) On the slow diffusion of point-of-care systems in therapeutic drug monitoring. Front Bioeng Biotechnol 3:20

    Article  Google Scholar 

  29. Losoya-Leal A, Estevez MC, Martinez-Chapa SO, Lechuga LM (2015) Design of a surface plasmon resonance immunoassay for therapeutic drug monitoring of amikacin. Talanta 141:253–258

    Article  CAS  Google Scholar 

  30. Jaworska A, Fornasaro S, Sergo V, Bonifacio A (2016) Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A critical review. Biosensors (Basel) 6(3):47

    Article  Google Scholar 

  31. Kruse CS, Goswamy R, Raval Y, Marawi S (2016) Challenges and opportunities of big data in health care: a systematic review. JMIR Med Inform 4:e38

    Article  Google Scholar 

  32. Uchino E, Kondo N, Matsubara T, Yanagita M (2017) Automated electronic alert systems for acute kidney injury: current status and future perspectives. Contrib Nephrol 189:124–129

    Article  Google Scholar 

  33. Jamal JA, Roberts DM, Udy AA, Mat-Nor MB, Mohamad-Nor FS, Wallis SC, Lipman J, Roberts JA (2015) Pharmacokinetics of piperacillin in critically ill patients receiving continuous venovenous haemofiltration: a randomised controlled trial of continuous infusion versus intermittent bolus administration. Int J Antimicrob Agents 46:39–44

    Article  CAS  Google Scholar 

  34. Seyler L, Cotton F, Taccone FS, De BD, Macours P, Vincent JL, Jacobs F (2011) Recommended beta-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care 15:R137

    Article  Google Scholar 

  35. Capellier G, Cornette C, Boillot A, Guinchard C, Jacques T, Blasco G, Barale F (1998) Removal of piperacillin in critically ill patients undergoing continuous venovenous hemofiltration. Crit Care Med 26:88–91

    Article  CAS  Google Scholar 

  36. Mueller SC, Majcher-Peszynska J, Hickstein H, Francke A, Pertschy A, Schulz M, Mundkowski R, Drewelow B (2002) Pharmacokinetics of piperacillin-tazobactam in anuric intensive care patients during continuous venovenous hemodialysis. Antimicrob Agents Chemother 46:1557–1560

    Article  CAS  Google Scholar 

  37. Arzuaga A, Isla A, Gascon AR, Maynar J, Corral E, Pedraz JL (2006) Elimination of piperacillin and tazobactam by renal replacement therapies with AN69 and polysulfone hemofilters: evaluation of the sieving coefficient. Blood Purif 24:347–354

    Article  CAS  Google Scholar 

  38. Bauer SR, Salem C, Connor MJ Jr., Groszek J, Taylor ME, Wei P, Tolwani AJ, Fissell WH (2012) Pharmacokinetics and pharmacodynamics of piperacillin-tazobactam in 42 patients treated with concomitant CRRT. Clin J Am Soc Nephrol 7:452–457

    Article  CAS  Google Scholar 

  39. Joos B, Schmidli M, Keusch G (1996) Pharmacokinetics of antimicrobial agents in anuric patients during continuous venovenous haemofiltration. Nephrol Dial Transplant 11:1582–1585

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Kielstein.

Ethics declarations

Interessenkonflikt

J. T. Kielstein erhielt von Fresenius Medical Care und der Novartis GmbH Unterstützung für „investigator initited trials“. S. Scherneck erhielt Unterstützung von Auriga Service GmbH & Co. KG außerhalb der vorliegenden Arbeit. A. K. Kruse, N. Anderson und H. Vaitiekunas geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

M. Buerke, Siegen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kielstein, J.T., Kruse, A.K., Anderson, N. et al. Boliden auf der Intensivstation. Med Klin Intensivmed Notfmed 114, 139–145 (2019). https://doi.org/10.1007/s00063-017-0303-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-017-0303-z

Schlüsselwörter

Keywords

Navigation