Skip to main content
Log in

Neue mikrobiologische Diagnostikverfahren

Chancen und Limitierungen

Advances in diagnostic microbiology

Opportunities and limitations

  • Leitthema
  • Published:
Medizinische Klinik - Intensivmedizin und Notfallmedizin Aims and scope Submit manuscript

Zusammenfassung

Auch aufgrund der Ausbreitung multiresistenter Erreger gewinnt eine rasche und zuverlässige mikrobiologische Diagnostik an Bedeutung. Der zeitnahe Erregernachweis und die zugehörige Empfindlichkeitsprüfung sind nicht nur entscheidende Basis zur optimalen Behandlung bei Vorliegen komplexer Resistenzmechanismen, sondern auch notwendige Voraussetzung zur Deeskalation kalkulierter Therapieregime. Somit ist die Mikrobiologie auch integraler Bestandteil von Antibiotic-Stewardship(ABS)-Programmen. Traditionelle Ansätze mikrobiologischer Diagnostik sind durch eine methodeninhärente Langsamkeit gekennzeichnet. Die Zeitspanne bis zum Vorliegen von aussagekräftigen Resultaten beträgt 48 h oder sogar länger und dies beeinflusst schließlich auch die Dauer nichtindizierter oder ungeeigneter Antibiotikatherapien. Die fortlaufende Verbesserung verfügbarer Methoden sowie die Implementierung völlig neuartiger Technologien haben in den vergangenen Jahren zu einer fundamentalen Veränderung mikrobiologischer Analytik geführt. Diese Methoden verbessern nicht nur Sensitivität und Spezifität, sondern führen auch zu einer deutlich schnelleren Verfügbarkeit von Ergebnissen. Diese neuen diagnostischen Methoden sollen hier hinsichtlich ihrer potenziellen Bedeutung für die klinische Infektiologie kritisch beleuchtet werden.

Abstract

In the light of ever increasing problems related to the emergence of multidrug-resistant bacteria, rapid microbiological diagnostics are of growing importance. Timely pathogen detection and availability of susceptibility data are essential for optimal treatment, but are even more crucial for de-escalation of broad spectrum empiric therapies. Medical microbiology is, thus, an integral part of antimicrobial stewardship programs. Traditional microbiological techniques for species identification and susceptibility testing rely on bacterial growth and are, thus, characterized by inherent slowness. Time-to-report is usually 48 h or longer, and typically delays optimization of therapeutic regimens. Constant improvement of available techniques (e. g., molecular methods) and introduction of novel methods (e. g., matrix-assisted laser desorption ionization time-of-flight [MALDI–ToF] mass spectrometry) have fundamentally changed diagnostic procedures. As a consequence, sensitivity and specificity as well as time-to-report have been dramatically improved. In this manuscript, key methodological advances in medical microbiology are discussed, emphasizing consequences for daily management of infectious disease patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Literatur

  1. Shorr AF, Micek ST, Welch EC, Doherty JA, Reichley RM, Kollef MH (2011) Inappropriate antibiotic therapy in Gram-negative sepsis increases hospital length of stay. Crit Care Med 39(1):46–51

    Article  CAS  PubMed  Google Scholar 

  2. Garcia-Vazquez E, Moral-Escudero E, Hernandez-Torres A, Canteras M, Gomez J, Ruiz J (2013) What is the impact of a rapid diagnostic E‑test in the treatment of patients with Gram-negative bacteraemia? Scand J Infect Dis 45(8):623–628

    Article  PubMed  Google Scholar 

  3. Kumar A, Ellis P, Arabi Y et al (2009) Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 136(5):1237–1248

    Article  PubMed  Google Scholar 

  4. Harris PN, Ferguson JK (2012) Antibiotic therapy for inducible AmpC beta-lactamase-producing Gram-negative bacilli: what are the alternatives to carbapenems, quinolones and aminoglycosides? Int J Antimicrob Agents 40(4):297–305

    Article  CAS  PubMed  Google Scholar 

  5. Jacoby GA (2009) AmpC beta-lactamases. Clin Microbiol Rev 22(1):161–182 (Table)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Novais A, Brilhante M, Pires J, Peixe L (2015) Evaluation of the recently launched rapid carb blue kit for detection of carbapenemase-producing gram-negative bacteria. J Clin Microbiol 53(9):3105–3107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poirel L, Nordmann P (2015) Rapidec carba NP test for rapid detection of carbapenemase producers. J Clin Microbiol 53(9):3003–3008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsumoto Y, Sakakihara S, Grushnikov A et al (2016) A microfluidic channel method for rapid drug-susceptibility testing of Pseudomonas aeruginosa. PLOS ONE 11(2):e0148797

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mezger A, Gullberg E, Goransson J et al (2015) A general method for rapid determination of antibiotic susceptibility and species in bacterial infections. J Clin Microbiol 53(2):425–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Parcina M, Bartonickova L, Vojvoda V et al (2015) Performance characteristics of the new accelerate ID/AST system for antibiotic susceptibility testing of enterobacteriaceae clinical isolates, compared to IVD routine laboratory AST systems. ICAAC, San Diego

    Google Scholar 

  11. Patel R (2015) MALDI-TOF MS for the diagnosis of infectious diseases. Clin Chem 61(1):100–111

    Article  CAS  PubMed  Google Scholar 

  12. Clerc O, Prod’hom G, Vogne C, Bizzini A, Calandra T, Greub G (2013) Impact of matrix-assisted laser desorption ionization time-of-flight mass spectrometry on the clinical management of patients with Gram-negative bacteremia: a prospective observational study. Clin Infect Dis 56(8):1101–1107

    Article  CAS  PubMed  Google Scholar 

  13. Huang AM, Newton D, Kunapuli A et al (2013) Impact of rapid organism identification via matrix-assisted laser desorption/ionization time-of-flight combined with antimicrobial stewardship team intervention in adult patients with bacteremia and candidemia. Clin Infect Dis 57(9):1237–1245

    Article  CAS  PubMed  Google Scholar 

  14. Wenzler E, Goff DA, Mangino JE, Reed EE, Wehr A, Bauer KA (2016) Impact of rapid identification of Acinetobacter baumannii via matrix-assisted laser desorption ionization time-of-flight mass spectrometry combined with antimicrobial stewardship in patients with pneumonia and/or bacteremia. Diagn Microbiol Infect Dis 84(1):63–68

    Article  CAS  PubMed  Google Scholar 

  15. Nagel JL, Huang AM, Kunapuli A et al (2014) Impact of antimicrobial stewardship intervention on coagulase-negative Staphylococcus blood cultures in conjunction with rapid diagnostic testing. J Clin Microbiol 52(8):2849–2854

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martiny D, Debaugnies F, Gateff D et al (2013) Impact of rapid microbial identification directly from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry on patient management. Clin Microbiol Infect 19(12):E568–E581

    Article  CAS  PubMed  Google Scholar 

  17. Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, Aepfelbacher M (2010) Rapid identification of bacteria from positive blood culture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J Clin Microbiol 48(5):1584–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burrer A, Findeisen P, Jager E et al (2015) Rapid detection of cefotaxime-resistant Escherichia coli by LC-MS. Int J Med Microbiol 305(8):860–864

    Article  CAS  PubMed  Google Scholar 

  19. Lasserre C, De Saint ML, Cuzon G et al (2015) Efficient detection of carbapenemase activity in Enterobacteriaceae by matrix-assisted laser desorption ionization-time of flight mass spectrometry in less than 30 minutes. J Clin Microbiol 53(7):2163–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Drancourt M, Michel-Lepage A, Boyer S, Raoult D (2016) The point-of-care laboratory in clinical microbiology. Clin Microbiol Rev 29(3):429–447

    Article  PubMed  Google Scholar 

  21. Blanc DS, Basset P, Nahimana-Tessemo I, Jaton K, Greub G, Zanetti G (2011) High proportion of wrongly identified methicillin-resistant Staphylococcus aureus carriers by use of a rapid commercial PCR assay due to presence of staphylococcal cassette chromosome element lacking the mecA gene. J Clin Microbiol 49(2):722–724

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marner ES, Wolk DM, Carr J et al (2011) Diagnostic accuracy of the Cepheid GeneXpert vanA/vanB assay ver. 1.0 to detect the vanA and vanB vancomycin resistance genes in Enterococcus from perianal specimens. Diagn Microbiol Infect Dis 69(4):382–389

    Article  CAS  PubMed  Google Scholar 

  23. Crobach MJ, Terveer EM, Kuijper EJ (2016) Effect of detecting and isolating asymptomatic Clostridium difficile carriers. JAMA Intern Med 176(10):1572–1573

    Article  PubMed  Google Scholar 

  24. Azzari C, Nieddu F, Moriondo M et al (2016) Underestimation of invasive meningococcal disease in italy. Emerging Infect Dis 22(3):469–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dunne EM, Mantanitobua S, Singh SP et al (2016) Real-time qPCR improves meningitis pathogen detection in invasive bacterial-vaccine preventable disease surveillance in Fiji. Sci Rep 6:39784. doi:10.1038/srep39784.:39784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyer T, Franke G, Polywka SK et al (2014) Improved detection of bacterial central nervous system infections by use of a broad-range PCR assay. J Clin Microbiol 52(5):1751–1753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Binnicker MJ (2015) Multiplex molecular panels for diagnosis of gastrointestinal infection: performance, result interpretation, and cost-effectiveness. J Clin Microbiol 53(12):3723–3728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krause JC, Panning M, Hengel H, Henneke P (2014) The role of multiplex PCR in respiratory tract infections in children. Dtsch Arztebl Int 111(38):639–645

    PubMed  PubMed Central  Google Scholar 

  29. Timbrook T, Maxam M, Bosso J (2015) Antibiotic discontinuation rates associated with positive respiratory viral panel and low procalcitonin results in proven or suspected respiratory infections. Infect Dis Ther 4(3):297–306

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yee C, Suarthana E, Dendukuri N, Nicolau I, Semret M, Frenette C (2016) Evaluating the impact of the multiplex respiratory virus panel polymerase chain reaction test on the clinical management of suspected respiratory viral infections in adult patients in a hospital setting. Am J Infect Control 44(11):1396–1398

    Article  PubMed  Google Scholar 

  31. Carver PL, Lin SW, DePestel DD, Newton DW (2008) Impact of mecA gene testing and intervention by infectious disease clinical pharmacists on time to optimal antimicrobial therapy for Staphylococcus aureus bacteremia at a University Hospital. J Clin Microbiol 46(7):2381–2383

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brown J, Paladino JA (2010) Impact of rapid methicillin-resistant Staphylococcus aureus polymerase chain reaction testing on mortality and cost effectiveness in hospitalized patients with bacteraemia: a decision model. Pharmacoeconomics 28(7):567–575

    PubMed  Google Scholar 

  33. Emonet S, Charles PG, Harbarth S et al (2016) Rapid molecular determination of methicillin resistance in staphylococcal bacteraemia improves early targeted antibiotic prescribing: a randomized clinical trial. Clin Microbiol Infect 27(16):10

    Google Scholar 

  34. Tuite N, Reddington K, Barry T, Zumla A, Enne V (2014) Rapid nucleic acid diagnostics for the detection of antimicrobial resistance in Gram-negative bacteria: is it time for a paradigm shift? J Antimicrob Chemother 69(7):1729–1733

    Article  CAS  PubMed  Google Scholar 

  35. Dodemont M, De MR, Nonhoff C, Roisin S, Denis O (2014) Performance of the Verigene Gram-negative blood culture assay for rapid detection of bacteria and resistance determinants. J Clin Microbiol 52(8):3085–3087

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ward C, Stocker K, Begum J, Wade P, Ebrahimsa U, Goldenberg SD (2015) Performance evaluation of the Verigene(R) (Nanosphere) and FilmArray(R) (BioFire(R)) molecular assays for identification of causative organisms in bacterial bloodstream infections. Eur J Clin Microbiol Infect Dis 34(3):487–496

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Rohde.

Ethics declarations

Interessenkonflikt

F. P. Maurer, M. Hentschke und H. Rohde geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

T. Welte, Hannover, K.-F. Bodmann, Eberswalde

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurer, F.P., Hentschke, M. & Rohde, H. Neue mikrobiologische Diagnostikverfahren. Med Klin Intensivmed Notfmed 112, 199–205 (2017). https://doi.org/10.1007/s00063-017-0275-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00063-017-0275-z

Schlüsselwörter

Keywords

Navigation