Skip to main content
Log in

Hypertrophe und restriktive Kardiomyopathie

Differenzierung mittels Bildgebung

Hypertrophic and restrictive cardiomyopathy

Differentiation by imaging

  • Schwerpunkt
  • Published:
Herz Aims and scope Submit manuscript

Zusammenfassung

Die Differenzierung von hypertrophen und restriktiven Kardiomyopathien ist im klinischen Alltag oft eine Herausforderung. Der Fortschritt im Bereich der multimodalen Bildgebung hat dies erheblich vereinfacht und auch unser Verständnis der pathophysiologischen Zusammenhänge erweitert. Die einzelnen Methoden wie die Echokardiographie, die kardiovaskuläre Magnetresonanztomographie (CMR), die kardiale Computertomographie (CT) und der Herzkatheter haben jeweils einen wichtigen Stellenwert in der Differenzialdiagnose dieser Erkrankungen und bei der Planung des therapeutischen Vorgehens, aber auch in Bezug auf prognostische Implikationen. Die vorliegende Übersichtsarbeit soll einen Überblick über wesentliche Erkenntnisse der letzten Jahre und aktuelle Entwicklungen geben und die wissenschaftliche Wertigkeit dieser Erkenntnisse beleuchten. Insbesondere die CMR hat mit der kontrastmittelverstärkten Gewebedifferenzierung wichtige Resultate gebracht und verspricht mit dem „parametrischen Mapping“, unser pathophysiologisches Verständnis weiter zu vertiefen und neue therapeutische Ansätze zu offenbaren.

Abstract

The differentiation between hypertrophic and restrictive cardiomyopathies is often challenging in the routine clinical setting. Advances in the field of multimodal imaging have improved the diagnostics of these diseases and understanding of the underlying pathophysiology. Each imaging method, such as echocardiography, cardiac magnetic resonance imaging (CMR), cardiac computed tomography (CT) and coronary angiography including cardiac catheterization for pressure measurements, is of significant value in clinical diagnostics and also regarding therapeutic approaches and prognostic implications. This review gives an overview of developments of the past few years, describes recent insights and puts these findings into a scientific context. Particularly CMR has added valuable information to current knowledge by its unique potential of contrast-enhanced tissue characterization. Another promising CMR tool, parametric mapping has appeared on the horizon and may further deepen our understanding of cardiac pathophysiology as well as offer new therapeutic options to patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur Heart J 29(2):270–276

    Article  PubMed  Google Scholar 

  2. Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113(14):1807–1816

    Article  PubMed  Google Scholar 

  3. Ackerman MJ, Priori SG, Willems S et al (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Europace 13(8):1077–1109

    Article  PubMed  Google Scholar 

  4. Kohli SK, Pantazis AA, Shah JS et al (2008) Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria? Eur Heart J 29(1):89–95

    Article  PubMed  Google Scholar 

  5. Dimitrow PP, Chojnowska L, Rudzinski T et al (2010) Sudden death in hypertrophic cardiomyopathy: old risk factors re-assessed in a new model of maximalized follow-up. Eur Heart J 31(24):3084–3093

    Article  PubMed  Google Scholar 

  6. Elliott PM, Anastasakis A, Borger MA et al (2014) 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur Heart J 35(39):2733–2779

    Article  PubMed  Google Scholar 

  7. Maciver DH (2011) A new method for quantification of left ventricular systolic function using a corrected ejection fraction. Eur J Echocardiogr 12(3):228–234

    Article  PubMed  Google Scholar 

  8. Urbano-Moral JA, Rowin EJ, Maron MS et al (2014) Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 7(1):11–19

    Article  PubMed  Google Scholar 

  9. Voigt JU, Pedrizzetti G, Lysyansky P et al (2015) Definitions for a common standard for 2D speckle tracking echocardiography: consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging. Eur Heart J Cardiovasc Imaging 16(1):1–11

    Article  CAS  PubMed  Google Scholar 

  10. Senior R, Becher H, Monaghan M et al (2009) Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr 10(2):194–212

    Article  PubMed  Google Scholar 

  11. Dorosz JL, Lezotte DC, Weitzenkamp DA et al (2012) Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol 59(20):1799–1808

    Article  PubMed Central  PubMed  Google Scholar 

  12. Shimada YJ, Shiota T (2011) A meta-analysis and investigation for the source of bias of left ventricular volumes and function by three-dimensional echocardiography in comparison with magnetic resonance imaging. Am J Cardiol 107(1):126–138

    Article  PubMed  Google Scholar 

  13. Shimada YJ, Shiota T (2012) Meta-analysis of accuracy of left ventricular mass measurement by three-dimensional echocardiography. Am J Cardiol 110(3):445–452

    Article  PubMed  Google Scholar 

  14. Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34(38):2949–3003

    Article  PubMed  Google Scholar 

  15. Bruder O, Schneider S, Nothnagel D et al (2009) EuroCMR (European Cardiovascular Magnetic Resonance) registry: results of the German pilot phase. J Am Coll Cardiol 54(15):1457–1466

    Article  PubMed  Google Scholar 

  16. Knobelsdorff-Brenkenhoff F von, Bublak A, El-Mahmoud S et al (2013) Single-centre survey of the application of cardiovascular magnetic resonance in clinical routine. Eur Heart J Cardiovasc Imaging 14(1):62–68

    Article  Google Scholar 

  17. Bellenger NG, Davies LC, Francis JM et al (2000) Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2(4):271–278

    Article  CAS  PubMed  Google Scholar 

  18. Gulati A, Ismail TF, Jabbour A et al (2013) The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation 128(15):1623–1633

    Article  PubMed  Google Scholar 

  19. Gulati A, Ismail TF, Jabbour A et al (2013) Clinical utility and prognostic value of left atrial volume assessment by cardiovascular magnetic resonance in non-ischaemic dilated cardiomyopathy. Eur J Heart Fail 15(6):660–670

    Article  CAS  PubMed  Google Scholar 

  20. Foell D, Jung BA, Germann E et al (2013) Segmental myocardial velocities in dilated cardiomyopathy with and without left bundle branch block. J Magn Reson Imaging 37(1):119–126

    Article  PubMed  Google Scholar 

  21. Wagner A, Mahrholdt H, Holly TA et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361(9355):374–379

    Article  PubMed  Google Scholar 

  22. Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol 53(17):1475–1487

    Article  PubMed Central  PubMed  Google Scholar 

  23. Moon JC, Messroghli DR, Kellman P et al (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15(1):92

    Article  PubMed Central  PubMed  Google Scholar 

  24. Montalescot G, Sechtem U, Achenbach S et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34(38):2949–3003

    Article  PubMed  Google Scholar 

  25. Nagueh SF, Bierig SM, Budoff MJ et al (2011) American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with hypertrophic cardiomyopathy: endorsed by the American Society of Nuclear Cardiology, Society for Cardiovascular Magnetic Resonance, and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 24(5):473–498

    Article  PubMed  Google Scholar 

  26. Maron MS (2012) Clinical utility of cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 14:13

    Article  PubMed Central  PubMed  Google Scholar 

  27. Moon JC, Fisher NG, McKenna WJ, Pennell DJ (2004) Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart 90(6):645–649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Maron MS, Rowin EJ, Lin D et al (2012) Prevalence and clinical profile of myocardial crypts in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 5(4):441–447

    Article  PubMed  Google Scholar 

  29. Child N, Muhr T, Sammut E et al (2014) Prevalence of myocardial crypts in a large retrospective cohort study by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 16(1):66

    Article  PubMed Central  PubMed  Google Scholar 

  30. Bruder O, Wagner A, Jensen CJ et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):875–887

    Article  PubMed  Google Scholar 

  31. O’Hanlon R, Grasso A, Roughton M et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56(11):867–874

    Article  Google Scholar 

  32. Prinz C, Schwarz M, Ilic I et al (2013) Myocardial fibrosis severity on cardiac magnetic resonance imaging predicts sustained arrhythmic events in hypertrophic cardiomyopathy. Can J Cardiol 29(3):358–363

    Article  PubMed  Google Scholar 

  33. Rudolph A, Abdel-Aty H, Bohl S et al (2009) Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy relation to remodeling. J Am Coll Cardiol 53(3):284–291

    Article  PubMed  Google Scholar 

  34. Geske JB, Sorajja P, Nishimura RA, Ommen SR (2007) Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation 116(23):2702–2708

    Article  PubMed  Google Scholar 

  35. Kitaoka H, Kubo T, Hayashi K et al (2013) Tissue Doppler imaging and prognosis in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 14(6):544–549

    Article  PubMed  Google Scholar 

  36. Efthimiadis GK, Giannakoulas G, Parcharidou DG et al (2007) Clinical significance of tissue Doppler imaging in patients with hypertrophic cardiomyopathy. Circ J 71(6):897–903

    Article  PubMed  Google Scholar 

  37. Kitaoka H, Kubo T, Okawa M et al (2011) Tissue doppler imaging and plasma BNP levels to assess the prognosis in patients with hypertrophic cardiomyopathy. J Am Soc Echocardiogr 24(9):1020–1025

    Article  PubMed  Google Scholar 

  38. Galderisi M, Cardim N, D’Andrea A et al (2015) The multi-modality cardiac imaging approach to the Athlete’s heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging [Epub ahead of print]

  39. Butz T, van Buuren F, Mellwig KP et al (2011) Two-dimensional strain analysis of the global and regional myocardial function for the differentiation of pathologic and physiologic left ventricular hypertrophy: a study in athletes and in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 27(1):91–100

    Article  CAS  PubMed  Google Scholar 

  40. Scharf M, Brem MH, Wilhelm M et al (2010) Atrial and ventricular functional and structural adaptations of the heart in elite triathletes assessed with cardiac MR imaging. Radiology 257(1):71–79

    Article  PubMed  Google Scholar 

  41. Hartlage G, Kim JH, Strickland PT et al (2015) The prognostic value of standardized reference values for speckle-tracking global longitudinal strain in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 31(3):557–565

    Article  PubMed  Google Scholar 

  42. Debonnaire P, Thijssen J, Leong DP et al (2014) Global longitudinal strain and left atrial volume index improve prediction of appropriate implantable cardioverter defibrillator therapy in hypertrophic cardiomyopathy patients. Int J Cardiovasc Imaging 30(3):549–558

    Article  PubMed  Google Scholar 

  43. Minami Y, Kajimoto K, Terajima Y et al (2011) Clinical implications of midventricular obstruction in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 57(23):2346–2355

    Article  PubMed  Google Scholar 

  44. Faber L, Seggewiss H, Welge D et al (2004) Echo-guided percutaneous septal ablation for symptomatic hypertrophic obstructive cardiomyopathy: 7 years of experience. Eur J Echocardiogr 5(5):347–355

    Article  PubMed  Google Scholar 

  45. Schulz-Menger J, Strohm O, Waigand J et al (2000) The value of magnetic resonance imaging of the left ventricular outflow tract in patients with hypertrophic obstructive cardiomyopathy after septal artery embolization. Circulation 101(15):1764–1766

    Article  CAS  PubMed  Google Scholar 

  46. Verhaert D, Gabriel RS, Johnston D et al (2010) The role of multimodality imaging in the management of pericardial disease. Circ Cardiovasc Imaging 3(3):333–343

    Article  PubMed  Google Scholar 

  47. Yared K, Baggish AL, Picard MH et al (2010) Multimodality imaging of pericardial diseases. JACC Cardiovasc Imaging 3(6):650–660

    Article  PubMed  Google Scholar 

  48. Nagueh SF, Appleton CP, Gillebert TC et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10(2):165–193

    Article  PubMed  Google Scholar 

  49. Klein AL, Abbara S, Agler DA et al (2013) American Society of Echocardiography clinical recommendations for multimodality cardiovascular imaging of patients with pericardial disease: endorsed by the Society for Cardiovascular Magnetic Resonance and Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 26(9):965–1012.e15

    Article  PubMed  Google Scholar 

  50. Talreja DR, Nishimura RA, Oh JK, Holmes DR (2008) Constrictive pericarditis in the modern era: novel criteria for diagnosis in the cardiac catheterization laboratory. J Am Coll Cardiol 51(3):315–319

    Article  PubMed  Google Scholar 

  51. Taylor AM, Dymarkowski S, Verbeken EK, Bogaert J (2006) Detection of pericardial inflammation with late-enhancement cardiac magnetic resonance imaging: initial results. Eur Radiol 16(3):569–574

    Article  PubMed  Google Scholar 

  52. Mirelis JG, Garcia-Alvarez A, Fernandez-Friera L et al (2013) Respiratory ventricular area changes measured with real-time cardiac magnetic resonance: a new, accurate, and reproducible approach for the diagnosis of pericardial constriction. Int J Cardiol 166(1):267–271

    Article  PubMed  Google Scholar 

  53. Phelan D, Collier P, Thavendiranathan P et al (2012) Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 98(19):1442–1448

    Article  PubMed  Google Scholar 

  54. Maceira AM, Joshi J, Prasad SK et al (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111(2):186–193

    Article  PubMed  Google Scholar 

  55. Sado DM, White SK, Piechnik SK et al (2013) Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging 6(3):392–398

    Article  PubMed  Google Scholar 

  56. Wassmuth R, Abdel-Aty H, Bohl S, Schulz-Menger J (2011) Prognostic impact of T2-weighted CMR imaging for cardiac amyloidosis. Eur Radiol 21(8):1643–1650

    Article  PubMed  Google Scholar 

  57. Modell B, Khan M, Darlison M et al (2008) Improved survival of thalassaemia major in the UK and relation to T2* cardiovascular magnetic resonance. J Cardiovasc Magn Reson 10:42

    Article  PubMed Central  PubMed  Google Scholar 

  58. Carpenter JP, Grasso AE, Porter JB et al (2013) On myocardial siderosis and left ventricular dysfunction in hemochromatosis. J Cardiovasc Magn Reson 15:24

    Article  PubMed Central  PubMed  Google Scholar 

  59. Christen-Zäch S, Huber M, Struk B et al (2006) Pseudoxanthoma elasticum: evaluation of diagnostic criteria based on molecular data. Br J Dermatol 155(1):89–93

    Article  PubMed  Google Scholar 

  60. Wassmuth R, Göbel U, Natusch A et al (2008) Cardiovascular magnetic resonance imaging detects cardiac involvement in Churg-Strauss syndrome. J Card Fail 14(10):856–860

    Article  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. J. Schulz-Menger: advisor Bayer Healthcare; working group research contracts Siemens, Medi-Circle. S. Fritschi und M. Prothmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Schulz-Menger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritschi, S., Prothmann, M. & Schulz-Menger, J. Hypertrophe und restriktive Kardiomyopathie. Herz 40, 591–599 (2015). https://doi.org/10.1007/s00059-015-4231-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-015-4231-5

Schlüsselwörter

Keywords

Navigation