Skip to main content
Log in

Epigenetic regulation of ASC/TMS1 expression: potential role in apoptosis and inflammasome function

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Cloning studies have revealed that the apoptosis-associated speck-like protein possessing a caspase-recruiting domain (ASC) and the target of methylation-induced silencing-1 (TMS) are identical proteins. ASC/TMS1 is a bipartite adaptor protein containing the N-terminal pyrin domain and the C-terminal caspase-recruitment domain. There is abundant literature on ASC/TMS1, mostly under the name TMS1, in the epigenetic regulation of apoptosis and carcinogenesis, whereas the abbreviation ASC has been adopted from studies on the assembly of inflammasomes and stimulation of inflammation. There is substantial literature emphasizing that there are common aspects in the regulation of apoptosis and inflammation, which may be related to the function of ASC/TMS1. The region of the transcription start site of ASC/TMS1 gene contains a 600-bp-long CpG island that is highly methylated and the transcription of ASC/TMS1 is repressed in several cancers. However, it is not known whether the ASC/TMS1-dependent epigenetic regulation controls the inflammasome functions and moreover whether this regulation has any role in the inflammation-mediated carcinogenesis or in the pathogenesis of age-related degenerative diseases. We will examine the mechanisms involved in the epigenetic regulation of ASC/TMS1 as well as their significance in the coordination of apoptosis and inflammasome functions. We will also review the role of aberrant methylation of ASC/TMS1 promoter in the function of inflammasomes, a major host defense system, in cellular housekeeping and carcinogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Conradt B (2009) Genetic control of programmed cell death during animal development. Annu Rev Genet 43:493–523

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Zhivotovsky B, Orrenius S (2010) Cell death mechanisms: cross-talk and role in disease. Exp Cell Res 316:1374–1383

    PubMed  CAS  Google Scholar 

  3. Fulda S (2009) Tumor resistance to apoptosis. Int J Cancer 124:511–515

    PubMed  CAS  Google Scholar 

  4. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Murphy TM, Perry AS, Lawler M (2008) The emergence of DNA methylation as a key modulator of aberrant cell death in prostate cancer. Endocr Relat Cancer 15:11–25

    PubMed  CAS  Google Scholar 

  6. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621

    PubMed  CAS  Google Scholar 

  7. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735

    PubMed  CAS  Google Scholar 

  9. Latz E, Xiao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13:397–411

    PubMed  CAS  Google Scholar 

  10. Masumoto J, Taniguchi S, Ayukawa K, Sarvotham H, Kishino T, Niikawa N, Hidaka E, Katsuyama T, Higuchi T, Sagara J (1999) ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem 274:33835–33838

    PubMed  CAS  Google Scholar 

  11. Conway KE, McConnell BB, Bowring CE, Donald CD, Warren ST, Vertino PM (2000) TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res 60:6236–6242

    PubMed  CAS  Google Scholar 

  12. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832

    PubMed  CAS  Google Scholar 

  13. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    PubMed  CAS  Google Scholar 

  14. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    PubMed  CAS  Google Scholar 

  15. Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Hashimoto H, Vertino PM, Cheng X (2010) Molecular coupling of DNA methylation and histone methylation. Epigenomics 2:657–669

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Stimson KM, Vertino PM (2002) Methylation-mediated silencing of TMS1/ASC is accompanied by histone hypoacetylation and CpG island-localized changes in chromatin architecture. J Biol Chem 277:4951–4958

    PubMed  CAS  Google Scholar 

  18. Levine JJ, Stimson-Crider KM, Vertino PM (2003) Effects of methylation on expression of TMS1/ASC in human breast cancer cells. Oncogene 22:3475–3488

    PubMed  CAS  Google Scholar 

  19. Kapoor-Vazirani P, Kagey JD, Powell DR, Vertino PM (2008) Role of hMOF-dependent histone H4 lysine 16 acetylation in the maintenance of TMS1/ASC gene activity. Cancer Res 68:6810–6821

    PubMed Central  PubMed  CAS  Google Scholar 

  20. Lucas ME, Crider KS, Powell DR, Kapoor-Vazirani P, Vertino PM (2009) Methylation-sensitive regulation of TMS1/ASC by the Ets factor, GA-binding protein-α. J Biol Chem 284:14698–14709

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Kapoor-Vazirani P, Kagey JD, Vertino PM (2011) SUV420H2-mediated H4K20 trimethylation enforces RNA polymerase II promoter-proximal pausing by blocking hMOF-dependent H4K16 acetylation. Mol Cell Biol 31:1594–1609

    PubMed Central  PubMed  CAS  Google Scholar 

  22. Adelman K, Lis JT (2012) Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13:720–731

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Scharf AN, Imhof A (2011) Every methyl counts–epigenetic calculus. FEBS Lett 585:2001–2007

    PubMed  CAS  Google Scholar 

  24. Chang Y, Sun L, Kokura K, Horton JR, Fukuda M, Espejo A, Izumi V, Koomen JM, Bedford MT, Zhang X, Shinkai Y, Fang J, Cheng X (2011) MPP8 mediates the interactions between DNA methyltransferase Dnmt3a and H3K9 methyltransferase GLP/G9a. Nat Commun 2:533

    PubMed Central  PubMed  Google Scholar 

  25. Kagey JD, Kapoor-Vazirani P, McCabe MT, Powell DR, Vertino PM (2010) Long-term stability of demethylation after transient exposure to 5-aza-2′-deoxycytidine correlates with sustained RNA polymerase II occupancy. Mol Cancer Res 8:1048–1059

    PubMed Central  PubMed  CAS  Google Scholar 

  26. McConnell BB, Vertino PM (2004) TMS1/ASC: the cancer connection. Apoptosis 9:5–18

    PubMed  CAS  Google Scholar 

  27. Virmani A, Rathi A, Sugio K, Sathyanarayana UG, Toyooka S, Kischel FC, Tonk V, Padar A, Takahashi T, Roth JA, Euhus DM, Minna JD, Gazdar AF (2003) Aberrant methylation of TMS1 in small cell, non small cell lung cancer and breast cancer. Int J Cancer 106:198–204

    PubMed  CAS  Google Scholar 

  28. Guan X, Sagara J, Yokoyama T, Koganehira Y, Oguchi M, Saida T, Taniguchi S (2003) ASC/TMS1, a caspase-1 activating adaptor, is downregulated by aberrant methylation in human melanoma. Int J Cancer 107:202–208

    PubMed  CAS  Google Scholar 

  29. Collard RL, Harya NS, Monzon FA, Maier CE, O’Keefe DS (2006) Methylation of the ASC gene promoter is associated with aggressive prostate cancer. Prostate 66:687–695

    PubMed  CAS  Google Scholar 

  30. Das PM, Ramachandran K, Vanwert J, Ferdinand L, Gopisetty G, Reis IM, Singal R (2006) Methylation mediated silencing of TMS1/ASC gene in prostate cancer. Mol Cancer 5:28

    PubMed Central  PubMed  Google Scholar 

  31. Stone AR, Bobo W, Brat DJ, Devi NS, Van Meir EG, Vertino PM (2004) Aberrant methylation and down-regulation of TMS1/ASC in human glioblastoma. Am J Pathol 165:1151–1161

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Martinez R, Schackert G, Esteller M (2007) Hypermethylation of the proapoptotic gene TMS1/ASC: prognostic importance in glioblastoma multiforme. J Neurooncol 82:133–139

    PubMed  CAS  Google Scholar 

  33. Grau E, Martinez F, Orellana C, Canete A, Yanez Y, Oltra S, Noguera R, Hernandez M, Bermudez JD, Castel V (2011) Hypermethylation of apoptotic genes as independent prognostic factor in neuroblastoma disease. Mol Carcinog 50:153–162

    PubMed  CAS  Google Scholar 

  34. Zhang C, Li H, Zhou G, Zhang Q, Zhang T, Li J, Zhang J, Hou J, Liew CT, Yin D (2007) Transcriptional silencing of the TMS1/ASC tumour suppressor gene by an epigenetic mechanism in hepatocellular carcinoma cells. J Pathol 212:134–142

    PubMed  CAS  Google Scholar 

  35. Zhang S, Bai J, Ren S, Wang R, Zhang L, Zuo Y (2012) Sodium butyrate restores ASC expression and induces apoptosis in LS174T cells. Int J Mol Med 30:1431–1437

    PubMed  CAS  Google Scholar 

  36. Drexler SK, Bonsignore L, Masin M, Tardivel A, Jackstadt R, Hermeking H, Schneider P, Gross O, Tschopp J, Yazdi AS (2012) Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc Natl Acad Sci USA 109:18384–18389

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Ohtsuka T, Ryu H, Minamishima YA, Macip S, Sagara J, Nakayama KI, Aaronson SA, Lee SW (2004) ASC is a Bax adaptor and regulates the p53-Bax mitochondrial apoptosis pathway. Nat Cell Biol 6:121–128

    PubMed  CAS  Google Scholar 

  38. Hasegawa M, Kawase K, Inohara N, Imamura R, Yeh WC, Kinoshita T, Suda T (2007) Mechanism of ASC-mediated apoptosis: bid-dependent apoptosis in type II cells. Oncogene 26:1748–1756

    PubMed  CAS  Google Scholar 

  39. Masumoto J, Dowds TA, Schaner P, Chen FF, Ogura Y, Li M, Zhu L, Katsuyama T, Sagara J, Taniguchi S, Gumucio DL, Nunez G, Inohara N (2003) ASC is an activating adaptor for NF-κB and caspase-8-dependent apoptosis. Biochem Biophys Res Commun 303:69–73

    PubMed  CAS  Google Scholar 

  40. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    PubMed  CAS  Google Scholar 

  41. Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES (2002) The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem 277:21119–21122

    PubMed  CAS  Google Scholar 

  42. Kantari C, Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta 1813:558–563

    PubMed  CAS  Google Scholar 

  43. Motani K, Kawase K, Imamura R, Kinoshita T, Kushiyama H, Suda T (2010) Activation of ASC induces apoptosis or necrosis, depending on the cell type, and causes tumor eradication. Cancer Sci 101:1822–1827

    PubMed  CAS  Google Scholar 

  44. Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040

    PubMed  CAS  Google Scholar 

  45. Liu W, Luo Y, Dunn JH, Norris DA, Dinarello CA, Fujita M (2013) Dual role of apoptosis-associated speck-like protein containing a CARD (ASC) in tumorigenesis of human melanoma. J Invest Dermatol 133:518–527

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Meylan E, Tschopp J (2005) The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci 30:151–159

    PubMed  CAS  Google Scholar 

  47. McCarthy JV, Ni J, Dixit VM (1998) RIP2 is a novel NF-κB-activating and cell death-inducing kinase. J Biol Chem 273:16968–16975

    PubMed  CAS  Google Scholar 

  48. Lamkanfi M, Kalai M, Saelens X, Declercq W, Vandenabeele P (2004) Caspase-1 activates nuclear factor of the κ-enhancer in B cells independently of its enzymatic activity. J Biol Chem 279:24785–24793

    PubMed  CAS  Google Scholar 

  49. Sarkar A, Duncan M, Hart J, Hertlein E, Guttridge DC, Wewers MD (2006) ASC directs NF-κB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. J Immunol 176:4979–4986

    PubMed  CAS  Google Scholar 

  50. Kersse K, Lamkanfi M, Bertrand MJ, Vanden Berghe T, Vandenabeele P (2011) Interaction patches of procaspase-1 caspase recruitment domains (CARDs) are differently involved in procaspase-1 activation and receptor-interacting protein 2 (RIP2)-dependent nuclear factor κB signaling. J Biol Chem 286:35874–35882

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Hasegawa M, Imamura R, Kinoshita T, Matsumoto N, Masumoto J, Inohara N, Suda T (2005) ASC-mediated NF-κB activation leading to interleukin-8 production requires caspase-8 and is inhibited by CLARP. J Biol Chem 280:15122–15130

    PubMed  CAS  Google Scholar 

  52. Lamkanfi M, Dixit VM (2009) Inflammasomes: guardians of cytosolic sanctity. Immunol Rev 227:95–105

    PubMed  CAS  Google Scholar 

  53. Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265

    PubMed  CAS  Google Scholar 

  54. Schattgen SA, Fitzgerald KA (2011) The PYHIN protein family as mediators of host defenses. Immunol Rev 243:109–118

    PubMed  CAS  Google Scholar 

  55. Choubey D (2012) DNA-responsive inflammasomes and their regulators in autoimmunity. Clin Immunol 142:223–231

    PubMed Central  PubMed  CAS  Google Scholar 

  56. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218

    PubMed  CAS  Google Scholar 

  57. Geddes BJ, Wang L, Huang WJ, Lavellee M, Manji GA, Brown M, Jurman M, Cao J, Morgenstern J, Merriam S, Glucksmann MA, DiStefano PS, Bertin J (2001) Human CARD12 is a novel CED4/Apaf-1 family member that induces apoptosis. Biochem Biophys Res Commun 284:77–82

    PubMed  CAS  Google Scholar 

  58. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    PubMed Central  PubMed  CAS  Google Scholar 

  59. de Koning HD, Bergboer JG, van den Bogaard EH, van Vlijmen-Willems IM, Rodijk-Olthuis D, Simon A, Zeeuwen PL, Schalkwijk J (2012) Strong induction of AIM2 expression in human epidermis in acute and chronic inflammatory skin conditions. Exp Dermatol 21:961–964

    PubMed  Google Scholar 

  60. Hakimi M, Peters A, Becker A, Böckler D, Dihlmann S (2013) Inflammation-related induction of absent in melanoma 2 (AIM2) in vascular cells and atherosclerotic lesions suggests a role in vascular pathogenesis. J Vasc Surg. doi:10.1016/j.jvs.2013.03.048

    PubMed  Google Scholar 

  61. Lamkanfi M, Dixit VM (2012) Inflammasomes and their roles in health and disease. Annu Rev Cell Dev Biol 28:137–161

    PubMed  CAS  Google Scholar 

  62. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ, Ting JP (2011) Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12:408–415

    PubMed  CAS  Google Scholar 

  63. De Nardo D, Latz E (2011) NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol 32:373–379

    PubMed Central  PubMed  Google Scholar 

  64. Tack CJ, Stienstra R, Joosten LA, Netea MG (2012) Inflammation links excess fat to insulin resistance: the role of the interleukin-1 family. Immunol Rev 249:239–252

    PubMed  CAS  Google Scholar 

  65. Salminen A, Ojala J, Kaarniranta K, Kauppinen A (2012) Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci 69:2999–3013

    PubMed  CAS  Google Scholar 

  66. Lopez-Castejon G, Pelegrin P (2012) Current status of inflammasome blockers as anti-inflammatory drugs. Expert Opin Investig Drugs 21:995–1007

    PubMed  CAS  Google Scholar 

  67. Stehlik C, Dorfleutner A (2007) COPs and POPs: modulators of inflammasome activity. J Immunol 179:7993–7998

    PubMed Central  PubMed  CAS  Google Scholar 

  68. Rathinam VA, Vanaja SK, Fitzgerald KA (2012) Regulation of inflammasome signaling. Nat Immunol 13:333–342

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J, Alnemri ES (2007) The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 14:1590–1604

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Cheng J, Waite AL, Tkaczyk ER, Ke K, Richards N, Hunt AJ, Gumucio DL (2010) Kinetic properties of ASC protein aggregation in epithelial cells. J Cell Physiol 222:738–747

    PubMed  CAS  Google Scholar 

  72. Miao EA, Rajan JV, Aderem A (2011) Caspase-1-induced pyroptotic cell death. Immunol Rev 243:206–214

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Aachoui Y, Sagulenko V, Miao EA, Stacey KJ (2013) Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr Opin Microbiol 16:319–326

    PubMed  CAS  Google Scholar 

  74. Broz P, von Moltke J, Jones JW, Vance RE, Monack DM (2010) Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8:471–483

    PubMed Central  PubMed  CAS  Google Scholar 

  75. Pierini R, Juruj C, Perret M, Jones CL, Mangeot P, Weiss DS, Henry T (2012) AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-infected caspase-1-deficient macrophages. Cell Death Differ 19:1709–1721

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA, Vajjhala PR, Roberts TL, Schroder K, Vince JE, Hill JM, Silke J, Stacey KJ (2013) AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ 20:1149–1160

    PubMed  CAS  Google Scholar 

  77. Ippagunta SK, Malireddi RK, Shaw PJ, Neale GA, Walle LV, Green DR, Fukui Y, Lamkanfi M, Kanneganti TD (2011) The inflammasome adaptor ASC regulates the function of adaptive immune cells by controlling Dock2-mediated Rac activation and actin polymerization. Nat Immunol 12:1010–1016

    PubMed Central  PubMed  Google Scholar 

  78. Ippagunta SK, Malireddi RK, Shaw PJ, Neale GA, Walle LV, Fukui Y, Green DR, Lamkanfi M, Kanneganti TD (2012) Addendum: defective Dock2 expression in a subset of ASC-deficient mouse lines. Nat Immunol 13:701–702

    PubMed  CAS  Google Scholar 

  79. Ohtsuka T, Liu XF, Koga Y, Kitajima Y, Nakafusa Y, Ha CW, Lee SW, Miyazaki K (2006) Methylation-induced silencing of ASC and the effect of expressed ASC on p53-mediated chemosensitivity in colorectal cancer. Oncogene 25:1807–1811

    PubMed  CAS  Google Scholar 

  80. Siraj AK, Hussain AR, Al-Rasheed M, Ahmed M, Bavi P, Alsobhi SA, Al-Nuaim A, Uddin S, Al-Kuraya K (2011) Demethylation of TMS1 gene sensitizes thyroid cancer cells to TRAIL-induced apoptosis. J Clin Endocrinol Metab 96:E215–E224

    PubMed  CAS  Google Scholar 

  81. Nakajima K, Takeoka M, Mori M, Hashimoto S, Sakurai A, Nose H, Higuchi K, Itano N, Shiohara M, Oh T, Taniguchi S (2010) Exercise effects on methylation of ASC gene. Int J Sports Med 31:671–675

    PubMed  CAS  Google Scholar 

  82. Gentilini D, Mari D, Castaldi D, Remondini D, Ogliari G, Ostan R, Bucci L, Sirchia SM, Tabano S, Cavagnini F, Monti D, Franceschi C, Di Blasio AM, Vitale G (2013) Role of epigenetics in human aging and longevity: genome-wide DNA methylation profile in centenarians and centenarians’ offspring. Age (Dordr) 35:1961–1973

    CAS  Google Scholar 

  83. Youm YH, Kanneganti TD, Vandanmagsar B, Zhu X, Ravussin A, Adijiang A, Owen JS, Thomas MJ, Francis J, Parks JS, Dixit VD (2012) The Nlrp3 inflammasome promotes age-related thymic demise and immunosenescence. Cell Rep 1:56–68

    PubMed  CAS  Google Scholar 

  84. Yeretssian G, Labbe K, Saleh M (2008) Molecular regulation of inflammation and cell death. Cytokine 43:380–390

    PubMed  CAS  Google Scholar 

  85. Ashida H, Mimuro H, Ogawa M, Kobayashi T, Sanada T, Kim M, Sasakawa C (2011) Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol 195:931–942

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Liu HD, Li W, Chen ZR, Hu YC, Zhang DD, Shen W, Zhou ML, Zhu L, Hang CH (2013) Expression of the NLRP3 inflammasome in cerebral cortex after traumatic brain injury in a rat model. Neurochem Res 38:2072–2083

    PubMed  CAS  Google Scholar 

  87. Li Y, Xu S, Jiang B, Cohen RA, Zang M (2013) Activation of sterol regulatory element binding protein and NLRP3 inflammasome in atherosclerotic lesion development in diabetic pigs. PLoS ONE 8:e67532

    PubMed Central  PubMed  CAS  Google Scholar 

  88. Segovia J, Sabbah A, Mgbemena V, Tsai SY, Chang TH, Berton MT, Morris IR, Allen IC, Ting JP, Bose S (2012) TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection. PLoS ONE 7:e29695

    PubMed Central  PubMed  CAS  Google Scholar 

  89. Ding Y, Li J, Liu S, Zhang L, Xiao H, Li J, Chen H, Petersen RB, Huang K, Zheng L (2013) DNA hypomethylation of inflammation-associated genes in adipose tissue of female mice after multigenerational high fat diet feeding. Int J Obes (Lond). doi:10.1038/ijo.2013.98

  90. Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F, van Bruggen R, Tschopp J (2007) Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem 55:443–452

    PubMed  CAS  Google Scholar 

  91. Heilbronn LK, Campbell LV (2008) Adipose tissue macrophages, low-grade inflammation and insulin resistance in human obesity. Curr Pharm Des 14:1225–1230

    PubMed  CAS  Google Scholar 

  92. Stienstra R, van Diepen JA, Tack CJ, Zaki MH, van de Veerdonk FL, Perera D, Neale GA, Hooiveld GJ, Hijmans A, Vroegrijk I, van den Berg S, Romijn J, Rensen PC, Joosten LA, Netea MG, Kanneganti TD (2011) Inflammasome is a central player in the induction of obesity and insulin resistance. Proc Natl Acad Sci USA 108:15324–15329

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Cedar H, Bergman Y (2012) Programming of DNA methylation patterns. Annu Rev Biochem 81:97–117

    PubMed  CAS  Google Scholar 

  94. Johnson AA, Akman K, Calimport SR, Wuttke D, Stolzing A, de Magalhaes JP (2012) The role of DNA methylation in aging, rejuvenation, and age-related disease. Rejuvenation Res 15:483–494

    PubMed Central  PubMed  CAS  Google Scholar 

  95. Johansson A, Enroth S, Gyllensten U (2013) Continuous aging of the human DNA methylome throughout the human lifespan. PLoS ONE 8:e67378

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Lu H, Ouyang W, Huang C (2006) Inflammation, a key event in cancer development. Mol Cancer Res 4:221–233

    PubMed  Google Scholar 

  97. Zitvogel L, Kepp O, Galluzzi L, Kroemer G (2012) Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol 13:343–351

    PubMed  CAS  Google Scholar 

  98. Kolb R, Liu GH, Janowski AM, Sutterwala FS, Zhang W (2013) Inflammasomes in cancer: a double-edged sword. Protein Cell. doi:10.1007/s13238-013-3051-8

    PubMed  Google Scholar 

  99. Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C, Ting JP (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207:1045–1056

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Zaki MH, Lamkanfi M, Kanneganti TD (2011) The Nlrp3 inflammasome: contributions to intestinal homeostasis. Trends Immunol 32:171–179

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M, Kanneganti TD (2010) IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol 185:4912–4920

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Qin JZ, Chaturvedi V, Denning MF, Choubey D, Diaz MO, Nickoloff BJ (1999) Role of NF-κB in the apoptotic-resistant phenotype of keratinocytes. J Biol Chem 274:37957–37964

    PubMed  CAS  Google Scholar 

  103. Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M (2007) The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem 282:36321–36329

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by grants from the Academy of Finland, VTR funding from Kuopio University Hospital, and strategic funding for UEFBRAIN consortium from the University of Eastern Finland. The authors thank Dr. Ewen MacDonald for checking the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antero Salminen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salminen, A., Kauppinen, A., Hiltunen, M. et al. Epigenetic regulation of ASC/TMS1 expression: potential role in apoptosis and inflammasome function. Cell. Mol. Life Sci. 71, 1855–1864 (2014). https://doi.org/10.1007/s00018-013-1524-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1524-9

Keywords

Navigation