Skip to main content

Advertisement

Log in

Structure, expression, and function of kynurenine aminotransferases in human and rodent brains

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Kynurenine aminotransferases (KATs) catalyze the synthesis of kynurenic acid (KYNA), an endogenous antagonist of N-methyl-d-aspartate and alpha 7-nicotinic acetylcholine receptors. Abnormal KYNA levels in human brains are implicated in the pathophysiology of schizophrenia, Alzheimer’s disease, and other neurological disorders. Four KATs have been reported in mammalian brains, KAT I/glutamine transaminase K/cysteine conjugate beta-lyase 1, KAT II/aminoadipate aminotransferase, KAT III/cysteine conjugate beta-lyase 2, and KAT IV/glutamic-oxaloacetic transaminase 2/mitochondrial aspartate aminotransferase. KAT II has a striking tertiary structure in N-terminal part and forms a new subgroup in fold type I aminotransferases, which has been classified as subgroup Iε. Knowledge regarding KATs is vast and complex; therefore, this review is focused on recent important progress of their gene characterization, physiological and biochemical function, and structural properties. The biochemical differences of four KATs, specific enzyme activity assays, and the structural insights into the mechanism of catalysis and inhibition of these enzymes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stone TW, Darlington LG (2002) Endogenous kynurenines as targets for drug discovery and development. Nat Rev Drug Discov 1:609–620

    Article  CAS  PubMed  Google Scholar 

  2. Kessler M, Terramani T, Lynch G, Baudry M (1989) A glycine site associated with N-methyl-d-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem 52:1319–1328

    Article  CAS  PubMed  Google Scholar 

  3. Daoudal G, Debanne D (2003) Long-term plasticity of intrinsic excitability: learning rules and mechanisms. Learn Mem 10:456–465

    Article  PubMed  Google Scholar 

  4. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    Article  CAS  PubMed  Google Scholar 

  5. Mark LP, Prost RW, Ulmer JL, Smith MM, Daniels DL, Strottmann JM, Brown WD, Hacein-Bey L (2001) Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. Am J Neuroradiol 22:1813–1824

    CAS  PubMed  Google Scholar 

  6. Schwarcz R, Guidetti P, Sathyasaikumar KV, Muchowski PJ (2009) Of mice, rats and men: revisiting the quinolinic acid hypothesis of Huntington’s disease. Prog Neurobiol

  7. Vamos E, Pardutz A, Klivenyi P, Toldi J, Vecsei L (2009) The role of kynurenines in disorders of the central nervous system: possibilities for neuroprotection. J Neurol Sci 283:21–27

    Article  CAS  PubMed  Google Scholar 

  8. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A, Larsen SA, Lee K, Leonard HL, Markey SP, Martin A, Milstein S, Mouradian MM, Pranzatelli MR, Quearry BJ, Salazar A, Smith M, Strauss SE, Sunderland T, Swedo SW, Tourtellotte WW (1992) Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain 115(Pt 5):1249–1273

    Article  PubMed  Google Scholar 

  9. Baran H, Jellinger K, Deecke L (1999) Kynurenine metabolism in Alzheimer’s disease. J Neural Transm 106:165–181

    Article  CAS  PubMed  Google Scholar 

  10. Ogawa T, Matson WR, Beal MF, Myers RH, Bird ED, Milbury P, Saso S (1992) Kynurenine pathway abnormalities in Parkinson’s disease. Neurology 42:1702–1706

    CAS  PubMed  Google Scholar 

  11. Rejdak K, Bartosik-Psujek H, Dobosz B, Kocki T, Grieb P, Giovannoni G, Turski WA, Stelmasiak Z (2002) Decreased level of kynurenic acid in cerebrospinal fluid of relapsing-onset multiple sclerosis patients. Neurosci Lett 331:63–65

    Article  CAS  PubMed  Google Scholar 

  12. Guidetti P, Reddy PH, Tagle DA, Schwarcz R (2000) Early kynurenergic impairment in Huntington’s disease and in a transgenic animal model. Neurosci Lett 283:233–235

    Article  CAS  PubMed  Google Scholar 

  13. Jauch D, Urbanska EM, Guidetti P, Bird ED, Vonsattel JP, Whetsell WO Jr, Schwarcz R (1995) Dysfunction of brain kynurenic acid metabolism in Huntington’s disease: focus on kynurenine aminotransferases. J Neurol Sci 130:39–47

    Article  CAS  PubMed  Google Scholar 

  14. Beal MF, Matson WR, Storey E, Milbury P, Ryan EA, Ogawa T, Bird ED (1992) Kynurenic acid concentrations are reduced in Huntington’s disease cerebral cortex. J Neurol Sci 108:80–87

    Article  CAS  PubMed  Google Scholar 

  15. Baran H, Kepplinger B, Herrera-Marschitz M, Stolze K, Lubec G, Nohl H (2001) Increased kynurenic acid in the brain after neonatal asphyxia. Life Sci 69:1249–1256

    Article  CAS  PubMed  Google Scholar 

  16. Ceresoli-Borroni G, Schwarcz R (2001) Neonatal asphyxia in rats: acute effects on cerebral kynurenine metabolism. Pediatr Res 50:231–235

    Article  CAS  PubMed  Google Scholar 

  17. Medana IM, Day NP, Salahifar-Sabet H, Stocker R, Smythe G, Bwanaisa L, Njobvu A, Kayira K, Turner GD, Taylor TE, Hunt NH (2003) Metabolites of the kynurenine pathway of tryptophan metabolism in the cerebrospinal fluid of Malawian children with malaria. J Infect Dis 188:844–849

    Article  CAS  PubMed  Google Scholar 

  18. Heyes MP, Brew BJ, Saito K, Quearry BJ, Price RW, Lee K, Bhalla RB, Der M, Markey SP (1992) Inter-relationships between quinolinic acid, neuroactive kynurenines, neopterin and beta 2-microglobulin in cerebrospinal fluid and serum of HIV-1-infected patients. J Neuroimmunol 40:71–80

    Article  CAS  PubMed  Google Scholar 

  19. Baran H, Cairns N, Lubec B, Lubec G (1996) Increased kynurenic acid levels and decreased brain kynurenine aminotransferase I in patients with Down syndrome. Life Sci 58:1891–1899

    Article  CAS  PubMed  Google Scholar 

  20. Ilzecka J, Kocki T, Stelmasiak Z, Turski WA (2003) Endogenous protectant kynurenic acid in amyotrophic lateral sclerosis. Acta Neurol Scand 107:412–418

    Article  CAS  PubMed  Google Scholar 

  21. Erhardt S, Blennow K, Nordin C, Skogh E, Lindstrom LH, Engberg G (2001) Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett 313:96–98

    Article  CAS  PubMed  Google Scholar 

  22. Erhardt S, Schwieler L, Nilsson L, Linderholm K, Engberg G (2007) The kynurenic acid hypothesis of schizophrenia. Physiol Behav 92:203–209

    Article  CAS  PubMed  Google Scholar 

  23. Nilsson LK, Linderholm KR, Engberg G, Paulson L, Blennow K, Lindstrom LH, Nordin C, Karanti A, Persson P, Erhardt S (2005) Elevated levels of kynurenic acid in the cerebrospinal fluid of male patients with schizophrenia. Schizophr Res 80:315–322

    Article  CAS  PubMed  Google Scholar 

  24. Wu HQ, Rassoulpour A, Goodman JH, Scharfman HE, Bertram EH, Schwarcz R (2005) Kynurenate and 7-chlorokynurenate formation in chronically epileptic rats. Epilepsia 46:1010–1016

    Article  CAS  PubMed  Google Scholar 

  25. Pereira EF, Hilmas C, Santos MD, Alkondon M, Maelicke A, Albuquerque EX (2002) Unconventional ligands and modulators of nicotinic receptors. J Neurobiol 53:479–500

    Article  CAS  PubMed  Google Scholar 

  26. Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473

    CAS  PubMed  Google Scholar 

  27. Alkondon M, Pereira EF, Yu P, Arruda EZ, Almeida LE, Guidetti P, Fawcett WP, Sapko MT, Randall WR, Schwarcz R, Tagle DA, Albuquerque EX (2004) Targeted deletion of the kynurenine aminotransferase ii gene reveals a critical role of endogenous kynurenic acid in the regulation of synaptic transmission via alpha7 nicotinic receptors in the hippocampus. J Neurosci 24:4635–4648

    Article  CAS  PubMed  Google Scholar 

  28. Stone TW (2007) Kynurenic acid blocks nicotinic synaptic transmission to hippocampal interneurons in young rats. Eur J Neurosci 25:2656–2665

    Article  PubMed  Google Scholar 

  29. Hogg RC, Raggenbass M, Bertrand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1–46

    Article  CAS  PubMed  Google Scholar 

  30. Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396

    Article  CAS  PubMed  Google Scholar 

  31. Kalamida D, Poulas K, Avramopoulou V, Fostieri E, Lagoumintzis G, Lazaridis K, Sideri A, Zouridakis M, Tzartos SJ (2007) Muscle and neuronal nicotinic acetylcholine receptors. Structure, function and pathogenicity. FEBS J 274:3799–3845

    Article  CAS  PubMed  Google Scholar 

  32. Albuquerque EX, Pereira EF, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89:73–120

    Article  CAS  PubMed  Google Scholar 

  33. Yu P, Di Prospero NA, Sapko MT, Cai T, Chen A, Melendez-Ferro M, Du F, Whetsell WO Jr, Guidetti P, Schwarcz R, Tagle DA (2004) Biochemical and phenotypic abnormalities in kynurenine aminotransferase II-deficient mice. Mol Cell Biol 24:6919–6930

    Article  CAS  PubMed  Google Scholar 

  34. Yu P, Li Z, Zhang L, Tagle DA, Cai T (2006) Characterization of kynurenine aminotransferase III, a novel member of a phylogenetically conserved KAT family. Gene 365:111–118

    Article  CAS  PubMed  Google Scholar 

  35. Carpenedo R, Pittaluga A, Cozzi A, Attucci S, Galli A, Raiteri M, Moroni F (2001) Presynaptic kynurenate-sensitive receptors inhibit glutamate release. Eur J Neurosci 13:2141–2147

    Article  CAS  PubMed  Google Scholar 

  36. Rassoulpour A, Wu HQ, Ferre S, Schwarcz R (2005) Nanomolar concentrations of kynurenic acid reduce extracellular dopamine levels in the striatum. J Neurochem 93:762–765

    Article  CAS  PubMed  Google Scholar 

  37. Grilli M, Raiteri L, Patti L, Parodi M, Robino F, Raiteri M, Marchi M (2006) Modulation of the function of presynaptic alpha7 and non-alpha7 nicotinic receptors by the tryptophan metabolites, 5-hydroxyindole and kynurenate in mouse brain. Br J Pharmacol 149:724–732

    Article  CAS  PubMed  Google Scholar 

  38. Wu HQ, Rassoulpour A, Schwarcz R (2007) Kynurenic acid leads, dopamine follows: a new case of volume transmission in the brain? J Neural Transm 114:33–41

    Article  PubMed  Google Scholar 

  39. Zmarowski A, Wu HQ, Brooks JM, Potter MC, Pellicciari R, Schwarcz R, Bruno JP (2009) Astrocyte-derived kynurenic acid modulates basal and evoked cortical acetylcholine release. Eur J Neurosci 29:529–538

    Article  CAS  PubMed  Google Scholar 

  40. Sapko MT, Guidetti P, Yu P, Tagle DA, Pellicciari R, Schwarcz R (2006) Endogenous kynurenate controls the vulnerability of striatal neurons to quinolinate: implications for Huntington’s disease. Exp Neurol 197:31–40

    Article  CAS  PubMed  Google Scholar 

  41. Coyle JT (2006) Glial metabolites of tryptophan and excitotoxicity: coming unglued. Exp Neurol 197:4–7

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Simonavicius N, Wu X, Swaminath G, Reagan J, Tian H, Ling L (2006) Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J Biol Chem 281:22021–22028

    Article  CAS  PubMed  Google Scholar 

  43. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774

    Article  CAS  PubMed  Google Scholar 

  44. Taylor MW, Feng GS (1991) Relationship between interferon-gamma, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J 5:2516–2522

    CAS  PubMed  Google Scholar 

  45. Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR Jr, Lopes OU (2001) Role of the medulla oblongata in hypertension. Hypertension 38:549–554

    CAS  PubMed  Google Scholar 

  46. Ito S, Komatsu K, Tsukamoto K, Sved AF (2000) Excitatory amino acids in the rostral ventrolateral medulla support blood pressure in spontaneously hypertensive rats. Hypertension 35:413–417

    CAS  PubMed  Google Scholar 

  47. Kwok JB, Kapoor R, Gotoda T, Iwamoto Y, Iizuka Y, Yamada N, Isaacs KE, Kushwaha VV, Church WB, Schofield PR, Kapoor V (2002) A missense mutation in kynurenine aminotransferase-1 in spontaneously hypertensive rats. J Biol Chem 277:35779–35782

    Article  CAS  PubMed  Google Scholar 

  48. Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood–brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017

    Article  CAS  PubMed  Google Scholar 

  49. Okuno E, Nakamura M, Schwarcz R (1991) Two kynurenine aminotransferases in human brain. Brain Res 542:307–312

    Article  CAS  PubMed  Google Scholar 

  50. Guidetti P, Okuno E, Schwarcz R (1997) Characterization of rat brain kynurenine aminotransferases I and II. J Neurosci Res 50:457–465

    Article  CAS  PubMed  Google Scholar 

  51. Schwarcz R, Pellicciari R (2002) Manipulation of brain kynurenines: glial targets, neuronal effects, and clinical opportunities. J Pharmacol Exp Ther 303:1–10

    Article  CAS  PubMed  Google Scholar 

  52. Han Q, Li J, Li J (2004) pH dependence, substrate specificity and inhibition of human kynurenine aminotransferase I. Eur J Biochem 271:4804–4814

    Article  CAS  PubMed  Google Scholar 

  53. Guidetti P, Amori L, Sapko MT, Okuno E, Schwarcz R (2007) Mitochondrial aspartate aminotransferase: a third kynurenate-producing enzyme in the mammalian brain. J Neurochem 102:103–111

    Article  CAS  PubMed  Google Scholar 

  54. Han Q, Robinson H, Cai T, Tagle DA, Li J (2009) Biochemical and structural properties of mouse kynurenine aminotransferase III. Mol Cell Biol 29:784–793

    Article  CAS  PubMed  Google Scholar 

  55. Perez-De La Cruz V, Konigsberg M, Santamaria A (2007) Kynurenine pathway and disease: an overview. CNS Neurol Disord Drug Targets 6:398–410

    Article  CAS  PubMed  Google Scholar 

  56. Nemeth H, Toldi J, Vecsei L (2005) Role of kynurenines in the central and peripheral nervous systems. Curr Neurovasc Res 2:249–260

    Article  PubMed  Google Scholar 

  57. Schwarcz R (2004) The kynurenine pathway of tryptophan degradation as a drug target. Curr Opin Pharmacol 4:12–17

    Article  CAS  PubMed  Google Scholar 

  58. Stone TW, Mackay GM, Forrest CM, Clark CJ, Darlington LG (2003) Tryptophan metabolites and brain disorders. Clin Chem Lab Med 41:852–859

    Article  CAS  PubMed  Google Scholar 

  59. Costantino G (2009) New promises for manipulation of kynurenine pathway in cancer and neurological diseases. Expert Opin Ther Targets 13:247–258

    Article  CAS  PubMed  Google Scholar 

  60. Erhardt S, Olsson SK, Engberg G (2009) Pharmacological manipulation of kynurenic acid: potential in the treatment of psychiatric disorders. CNS Drugs 23:91–101

    Article  CAS  PubMed  Google Scholar 

  61. Nemeth H, Toldi J, Vecsei L (2006) Kynurenines, Parkinson’s disease and other neurodegenerative disorders: preclinical and clinical studies. J Neural Transm 70(Suppl):285–304

    Google Scholar 

  62. Perry S, Harries H, Scholfield C, Lock T, King L, Gibson G, Goldfarb P (1995) Molecular cloning and expression of a cDNA for human kidney cysteine conjugate beta-lyase. FEBS Lett 360:277–280

    Article  CAS  PubMed  Google Scholar 

  63. Goh DL, Patel A, Thomas GH, Salomons GS, Schor DS, Jakobs C, Geraghty MT (2002) Characterization of the human gene encoding alpha-aminoadipate aminotransferase (AADAT). Mol Genet Metab 76:172–180

    Article  CAS  PubMed  Google Scholar 

  64. Martini F, Angelaccio S, Barra D, Pascarella S, Maras B, Doonan S, Bossa F (1985) The primary structure of mitochondrial aspartate aminotransferase from human heart. Biochim Biophys Acta 832:46–51

    CAS  PubMed  Google Scholar 

  65. Papadimitriou JM, van Duijn P (1970) The ultrastructural localization of the isozymes of aspartate aminotransferase in murine tissues. J Cell Biol 47:84–98

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka M, Takeda N, Tohyama M, Matsunaga T (1990) Immunocytochemical localization of mitochondrial and cytosolic aspartate aminotransferase isozymes in the vestibular end-organs of rats. Eur Arch Otorhinolaryngol 247:119–121

    Article  CAS  PubMed  Google Scholar 

  67. Giannattasio S, Marra E, Abruzzese MF, Greco M, Quagliariello E (1991) The in vitro-synthesized precursor and mature mitochondrial aspartate aminotransferase share the same import pathway in isolated mitochondria. Arch Biochem Biophys 290:528–534

    Article  CAS  PubMed  Google Scholar 

  68. Faff-Michalak L, Albrecht J (1991) Aspartate aminotransferase, malate dehydrogenase, and pyruvate carboxylase activities in rat cerebral synaptic and nonsynaptic mitochondria: effects of in vitro treatment with ammonia, hyperammonemia and hepatic encephalopathy. Metab Brain Dis 6:187–197

    Article  CAS  PubMed  Google Scholar 

  69. McKenna MC, Stevenson JH, Huang X, Hopkins IB (2000) Differential distribution of the enzymes glutamate dehydrogenase and aspartate aminotransferase in cortical synaptic mitochondria contributes to metabolic compartmentation in cortical synaptic terminals. Neurochem Int 37:229–241

    Article  CAS  PubMed  Google Scholar 

  70. Cechetto JD, Sadacharan SK, Berk PD, Gupta RS (2002) Immunogold localization of mitochondrial aspartate aminotransferase in mitochondria and on the cell surface in normal rat tissues. Histol Histopathol 17:353–364

    CAS  PubMed  Google Scholar 

  71. Shrawder E, Martinez-Carrion M (1972) Evidence of phenylalanine transaminase activity in the isoenzymes of aspartate transaminase. J Biol Chem 247:2486–2492

    CAS  PubMed  Google Scholar 

  72. Suzuki T, Kishi Y, Totani M, Kagamiyama H, Murachi T (1987) Monoclonal and polyclonal antibodies against porcine mitochondrial aspartate aminotransferase: their inhibition modes and application to enzyme immunoassay. Biotechnol Appl Biochem 9:170–180

    CAS  PubMed  Google Scholar 

  73. Mawal MR, Mukhopadhyay A, Deshmukh DR (1991) Purification and properties of alpha-aminoadipate aminotransferase from rat liver and kidney mitochondria. Prep Biochem 21:151–162

    Article  CAS  PubMed  Google Scholar 

  74. Takeuchi F, Otsuka H, Shibata Y (1983) Purification, characterization and identification of rat liver mitochondrial kynurenine aminotransferase with alpha-aminoadipate aminotransferase. Biochim Biophys Acta 743:323–330

    CAS  PubMed  Google Scholar 

  75. Rossi F, Garavaglia S, Montalbano V, Walsh MA, Rizzi M (2008) Crystal structure of human kynurenine aminotransferase II, a drug target for the treatment of schizophrenia. J Biol Chem 283:3559–3566

    Article  CAS  PubMed  Google Scholar 

  76. Han Q, Robinson H, Li J (2008) Crystal structure of human kynurenine aminotransferase II. J Biol Chem 283:3567–3573

    Article  CAS  PubMed  Google Scholar 

  77. Fang J, Han Q, Li J (2002) Isolation, characterization, and functional expression of kynurenine aminotransferase cDNA from the yellow fever mosquito, Aedes aegypti(1). Insect Biochem Mol Biol 32:943–950

    Article  CAS  PubMed  Google Scholar 

  78. Han Q, Li J (2004) Cysteine and keto acids modulate mosquito kynurenine aminotransferase catalyzed kynurenic acid production. FEBS Lett 577:381–385

    Article  CAS  PubMed  Google Scholar 

  79. Cooper AJ (2004) The role of glutamine transaminase K (GTK) in sulfur and alpha-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants. Neurochem Int 44:557–577

    Article  CAS  PubMed  Google Scholar 

  80. Cooper AJ, Meister A (1981) Comparative studies of glutamine transaminases from rat tissues. Comp Biochem Physiol B 69B:137–145

    Article  CAS  Google Scholar 

  81. McGoldrick TA, Lock EA, Rodilla V, Hawksworth GM (2003) Renal cysteine conjugate C-S lyase mediated toxicity of halogenated alkenes in primary cultures of human and rat proximal tubular cells. Arch Toxicol 77:365–370

    Article  CAS  PubMed  Google Scholar 

  82. Dekant W, Vamvakas S, Anders MW (1994) Formation and fate of nephrotoxic and cytotoxic glutathione S-conjugates: cysteine conjugate beta-lyase pathway. Adv Pharmacol 27:115–162

    Article  CAS  PubMed  Google Scholar 

  83. Spencer JP, Whiteman M, Jenner P, Halliwell B (2002) 5-S-Cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons. J Neurochem 81:122–129

    Article  CAS  PubMed  Google Scholar 

  84. Cooper AJ, Pinto JT, Krasnikov BF, Niatsetskaya ZV, Han Q, Li J, Vauzour D, Spencer JP (2008) Substrate specificity of human glutamine transaminase K as an aminotransferase and as a cysteine S-conjugate beta-lyase. Arch Biochem Biophys 474:72–81

    Article  CAS  PubMed  Google Scholar 

  85. Matsuda M, Ogur M (1969) Enzymatic and physiological properties of the yeast glutamate-alpha-ketoadipate transaminase. J Biol Chem 244:5153–5158

    CAS  PubMed  Google Scholar 

  86. Tobes MC, Mason M (1975) l-kynurenine aminotransferase and l-alpha-aminoadipate aminotransferase. I. Evidence for identity. Biochem Biophys Res Commun 62:390–397

    Article  CAS  PubMed  Google Scholar 

  87. Tobes MC, Mason M (1977) Alpha-Aminoadipate aminotransferase and kynurenine aminotransferase. Purification, characterization, and further evidence for identity. J Biol Chem 252:4591–4599

    CAS  PubMed  Google Scholar 

  88. Buchli R, Alberati-Giani D, Malherbe P, Kohler C, Broger C, Cesura AM (1995) Cloning and functional expression of a soluble form of kynurenine/alpha-aminoadipate aminotransferase from rat kidney. J Biol Chem 270:29330–29335

    Article  CAS  PubMed  Google Scholar 

  89. Yu P, Mosbrook DM, Tagle DA (1999) Genomic organization and expression analysis of mouse kynurenine aminotransferase II, a possible factor in the pathophysiology of Huntington’s disease. Mamm Genome 10:845–852

    Article  CAS  PubMed  Google Scholar 

  90. Han Q, Cai T, Tagle DA, Robinson H, Li J (2008) Substrate specificity and structure of human aminoadipate aminotransferase/kynurenine aminotransferase II. Biosci Rep 28:205–215

    Article  CAS  PubMed  Google Scholar 

  91. Miyazaki T, Miyazaki J, Yamane H, Nishiyama M (2004) alpha-Aminoadipate aminotransferase from an extremely thermophilic bacterium, Thermus thermophilus. Microbiology 150:2327–2334

    Article  CAS  PubMed  Google Scholar 

  92. Xu H, Andi B, Qian J, West AH, Cook PF (2006) The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem Biophys 46:43–64

    Article  CAS  PubMed  Google Scholar 

  93. Zabriskie TM, Jackson MD (2000) Lysine biosynthesis and metabolism in fungi. Nat Prod Rep 17:85–97

    Article  CAS  PubMed  Google Scholar 

  94. Matsuda M, Ogur M (1969) Separation and specificity of the yeast glutamate-alpha-ketoadipate transaminase. J Biol Chem 244:3352–3358

    CAS  PubMed  Google Scholar 

  95. Han Q, Fang J, Li J (2001) Kynurenine aminotransferase and glutamine transaminase K of Escherichia coli: identity with aspartate aminotransferase. Biochem J 360:617–623

    Article  CAS  PubMed  Google Scholar 

  96. Cooper AJ, Meister A (1985) Metabolic significance of transamination. In: Christen P, Metzler DE (eds) Transaminases. Wiley, New York, pp 500–580

    Google Scholar 

  97. Moran J, Alavez S, Rivera-Gaxiola M, Valencia A, Hurtado S (1999) Effect of NMDA antagonists on the activity of glutaminase and aspartate aminotransferase in the developing rat cerebellum. Int J Dev Neurosci 17:57–65

    Article  CAS  PubMed  Google Scholar 

  98. Moran J, Rivera-Gaxiola M (1992) Effect of potassium and N-methyl-d-aspartate on the aspartate aminotransferase activity in cultured cerebellar granule cells. J Neurosci Res 33:239–247

    Article  CAS  PubMed  Google Scholar 

  99. Westergaard N, Drejer J, Schousboe A, Sonnewald U (1996) Evaluation of the importance of transamination versus deamination in astrocytic metabolism of [U-13C]glutamate. Glia 17:160–168

    Article  CAS  PubMed  Google Scholar 

  100. Yudkoff M, Daikhin Y, Nissim I, Horyn O, Lazarow A, Luhovyy B, Wehrli S (2005) Response of brain amino acid metabolism to ketosis. Neurochem Int 47:119–128

    Article  CAS  PubMed  Google Scholar 

  101. Schousboe A, Westergaard N, Sonnewald U, Petersen SB, Huang R, Peng L, Hertz L (1993) Glutamate and glutamine metabolism and compartmentation in astrocytes. Dev Neurosci 15:359–366

    Article  CAS  PubMed  Google Scholar 

  102. Hertz L, Drejer J, Schousboe A (1988) Energy metabolism in glutamatergic neurons, GABAergic neurons and astrocytes in primary cultures. Neurochem Res 13:605–610

    Article  CAS  PubMed  Google Scholar 

  103. McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    Article  CAS  PubMed  Google Scholar 

  104. Sonnewald U, Westergaard N, Schousboe A (1997) Glutamate transport and metabolism in astrocytes. Glia 21:56–63

    Article  CAS  PubMed  Google Scholar 

  105. McKenna MC, Tildon JT, Stevenson JH, Huang X (1996) New insights into the compartmentation of glutamate and glutamine in cultured rat brain astrocytes. Dev Neurosci 18:380–390

    Article  CAS  PubMed  Google Scholar 

  106. Palaiologos G, Hertz L, Schousboe A (1989) Role of aspartate aminotransferase and mitochondrial dicarboxylate transport for release of endogenously and exogenously supplied neurotransmitter in glutamatergic neurons. Neurochem Res 14:359–366

    Article  CAS  PubMed  Google Scholar 

  107. Palaiologos G, Hertz L, Schousboe A (1988) Evidence that aspartate aminotransferase activity and ketodicarboxylate carrier function are essential for biosynthesis of transmitter glutamate. J Neurochem 51:317–320

    Article  CAS  PubMed  Google Scholar 

  108. Fitzpatrick SM, Cooper AJ, Duffy TE (1983) Use of beta-methylene-d, l-aspartate to assess the role of aspartate aminotransferase in cerebral oxidative metabolism. J Neurochem 41:1370–1383

    Article  CAS  PubMed  Google Scholar 

  109. Cheeseman AJ, Clark JB (1988) Influence of the malate–aspartate shuttle on oxidative metabolism in synaptosomes. J Neurochem 50:1559–1565

    Article  CAS  PubMed  Google Scholar 

  110. McKenna MC, Waagepetersen HS, Schousboe A, Sonnewald U (2006) Neuronal and astrocytic shuttle mechanisms for cytosolic–mitochondrial transfer of reducing equivalents: current evidence and pharmacological tools. Biochem Pharmacol 71:399–407

    Article  CAS  PubMed  Google Scholar 

  111. McKenna MC, Hopkins IB, Lindauer SL, Bamford P (2006) Aspartate aminotransferase in synaptic and nonsynaptic mitochondria: differential effect of compounds that influence transient hetero-enzyme complex (metabolon) formation. Neurochem Int 48:629–636

    CAS  PubMed  Google Scholar 

  112. Cooper AJ, Bruschi SA, Iriarte A, Martinez-Carrion M (2002) Mitochondrial aspartate aminotransferase catalyses cysteine S-conjugate beta-lyase reactions. Biochem J 368:253–261

    Article  CAS  PubMed  Google Scholar 

  113. Baran H, Okuno E, Kido R, Schwarcz R (1994) Purification and characterization of kynurenine aminotransferase I from human brain. J Neurochem 62:730–738

    Article  CAS  PubMed  Google Scholar 

  114. Schmidt W, Guidetti P, Okuno E, Schwarcz R (1993) Characterization of human brain kynurenine aminotransferases using [3H]kynurenine as a substrate. Neuroscience 55:177–184

    Article  PubMed  Google Scholar 

  115. Milart P, Urbanska EM, Turski WA, Paszkowski T, Sikorski R (2001) Kynurenine aminotransferase I activity in human placenta. Placenta 22:259–261

    Article  CAS  PubMed  Google Scholar 

  116. Baran H, Amann G, Lubec B, Lubec G (1997) Kynurenic acid and kynurenine aminotransferase in heart. Pediatr Res 41:404–410

    Article  CAS  PubMed  Google Scholar 

  117. Han Q, Robinson H, Cai T, Tagle DA, Li J (2009) Structural insight into the inhibition of human kynurenine aminotransferase I/glutamine transaminase K. J Med Chem 52:2786–2793

    Article  CAS  PubMed  Google Scholar 

  118. Pellicciari R, Venturoni F, Bellocchi D, Carotti A, Marinozzi M, Macchiarulo A, Amori L, Schwarcz R (2008) Sequence variants in kynurenine aminotransferase II (KAT II) orthologs determine different potencies of the inhibitor S-ESBA. ChemMedChem 3:1199–1202

    Article  CAS  PubMed  Google Scholar 

  119. Pellicciari R, Rizzo RC, Costantino G, Marinozzi M, Amori L, Guidetti P, Wu HQ, Schwarcz R (2006) Modulators of the kynurenine pathway of tryptophan metabolism: synthesis and preliminary biological evaluation of (S)-4-(ethylsulfonyl)benzoylalanine, a potent and selective kynurenine aminotransferase II (KAT II) inhibitor. ChemMedChem 1:528–531

    Article  CAS  PubMed  Google Scholar 

  120. Rossi F, Han Q, Li J, Li J, Rizzi M (2004) Crystal structure of human kynurenine aminotransferase I. J Biol Chem 279:50214–50220

    Article  CAS  PubMed  Google Scholar 

  121. Goto M, Omi R, Miyahara I, Hosono A, Mizuguchi H, Hayashi H, Kagamiyama H, Hirotsu K (2004) Crystal structures of glutamine:phenylpyruvate aminotransferase from Thermus thermophilus HB8: induced fit and substrate recognition. J Biol Chem 279:16518–16525

    Article  CAS  PubMed  Google Scholar 

  122. Han Q, Gao YG, Robinson H, Ding H, Wilson S, Li J (2005) Crystal structures of Aedes aegypti kynurenine aminotransferase. FEBS J 272:2198–2206

    Article  CAS  PubMed  Google Scholar 

  123. Wogulis M, Chew ER, Donohoue PD, Wilson DK (2008) Identification of formyl kynurenine formamidase and kynurenine aminotransferase from Saccharomyces cerevisiae using crystallographic, bioinformatic and biochemical evidence. Biochemistry 47:1608–1621

    Article  CAS  PubMed  Google Scholar 

  124. Tomita T, Miyagawa T, Miyazaki T, Fushinobu S, Kuzuyama T, Nishiyama M (2009) Mechanism for multiple-substrates recognition of alpha-aminoadipate aminotransferase from Thermus thermophilus. Proteins 75:348–359

    Article  CAS  PubMed  Google Scholar 

  125. Chon H, Matsumura H, Koga Y, Takano K, Kanaya S (2005) Crystal structure of a human kynurenine aminotransferase II homologue from Pyrococcus horikoshii OT3 at 2.20 A resolution. Proteins 61:685–688

    Article  CAS  PubMed  Google Scholar 

  126. McPhalen CA, Vincent MG, Jansonius JN (1992) X-ray structure refinement and comparison of three forms of mitochondrial aspartate aminotransferase. J Mol Biol 225:495–517

    Article  CAS  PubMed  Google Scholar 

  127. Rossi F, Schwarcz R, Rizzi M (2008) Curiosity to kill the KAT (kynurenine aminotransferase): structural insights into brain kynurenic acid synthesis. Curr Opin Struct Biol 18:748–755

    Article  CAS  PubMed  Google Scholar 

  128. Eliot AC, Kirsch JF (2004) Pyridoxal phosphate enzymes: mechanistic, structural, and evolutionary considerations. Annu Rev Biochem 73:383–415

    Article  CAS  PubMed  Google Scholar 

  129. Han Q, Gao YG, Robinson H, Li J (2008) Structural insight into the mechanism of substrate specificity of Aedes kynurenine aminotransferase. Biochemistry 47:1622–1630

    Article  CAS  PubMed  Google Scholar 

  130. Okamoto A, Nakai Y, Hayashi H, Hirotsu K, Kagamiyama H (1998) Crystal structures of Paracoccus denitrificans aromatic amino acid aminotransferase: a substrate recognition site constructed by rearrangement of hydrogen bond network. J Mol Biol 280:443–461

    Article  CAS  PubMed  Google Scholar 

  131. Han Q, Robinson H, Gao YG, Vogelaar N, Wilson SR, Rizzi M, Li J (2006) Crystal structures of Aedes aegypti alanine glyoxylate aminotransferase. J Biol Chem 281:37175–37182

    Article  CAS  PubMed  Google Scholar 

  132. Jansonius JN (1998) Structure, evolution and action of vitamin B6-dependent enzymes. Curr Opin Struct Biol 8:759–769

    Article  CAS  PubMed  Google Scholar 

  133. Grishin NV, Phillips MA, Goldsmith EJ (1995) Modeling of the spatial structure of eukaryotic ornithine decarboxylases. Protein Sci 4:1291–1304

    Article  CAS  PubMed  Google Scholar 

  134. Kack H, Sandmark J, Gibson K, Schneider G, Lindqvist Y (1999) Crystal structure of diaminopelargonic acid synthase: evolutionary relationships between pyridoxal-5′-phosphate-dependent enzymes. J Mol Biol 291:857–876

    Article  CAS  PubMed  Google Scholar 

  135. Schneider G, Kack H, Lindqvist Y (2000) The manifold of vitamin B6 dependent enzymes. Structure 8:R1–R6

    Article  CAS  PubMed  Google Scholar 

  136. Mehta PK, Hale TI, Christen P (1993) Aminotransferases: demonstration of homology and division into evolutionary subgroups. Eur J Biochem 214:549–561

    Article  CAS  PubMed  Google Scholar 

  137. DeLano WL (2002) The PyMOL molecular graphics system. Delano Scientific, San Carlos

    Google Scholar 

  138. Jensen RA, Gu W (1996) Evolutionary recruitment of biochemically specialized subdivisions of Family I within the protein superfamily of aminotransferases. J Bacteriol 178:2161–2171

    CAS  PubMed  Google Scholar 

  139. Hohenester E, Jansonius JN (1994) Crystalline mitochondrial aspartate aminotransferase exists in only two conformations. J Mol Biol 236:963–968

    Article  CAS  PubMed  Google Scholar 

  140. Rhee S, Silva MM, Hyde CC, Rogers PH, Metzler CM, Metzler DE, Arnone A (1997) Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate. J Biol Chem 272:17293–17302

    Article  CAS  PubMed  Google Scholar 

  141. Miyahara I, Hirotsu K, Hayashi H, Kagamiyama H (1994) X-ray crystallographic study of pyridoxamine 5′-phosphate-type aspartate aminotransferases from Escherichia coli in three forms. J Biochem (Tokyo) 116:1001–1012

    CAS  Google Scholar 

  142. Malashkevich VN, Strokopytov BV, Borisov VV, Dauter Z, Wilson KS, Torchinsky YM (1995) Crystal structure of the closed form of chicken cytosolic aspartate aminotransferase at 1.9 A resolution. J Mol Biol 247:111–124

    Article  CAS  PubMed  Google Scholar 

  143. Okamoto A, Higuchi T, Hirotsu K, Kuramitsu S, Kagamiyama H (1994) X-ray crystallographic study of pyridoxal 5′-phosphate-type aspartate aminotransferases from Escherichia coli in open and closed form. J Biochem (Tokyo) 116:95–107

    CAS  Google Scholar 

  144. Jager J, Moser M, Sauder U, Jansonius JN (1994) Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms. J Mol Biol 239:285–305

    Article  CAS  PubMed  Google Scholar 

  145. Hirotsu K, Goto M, Okamoto A, Miyahara I (2005) Dual substrate recognition of aminotransferases. Chem Rec 5:160–172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a NS063836 grant, an Intramural Research Program of the institutes of NIDCR and NINDS at NIH. We are grateful to Elizabeth Watson (Department of Biochemistry, Virginia Tech) for critically reading this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyong Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Q., Cai, T., Tagle, D.A. et al. Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Cell. Mol. Life Sci. 67, 353–368 (2010). https://doi.org/10.1007/s00018-009-0166-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-009-0166-4

Keywords

Navigation