Skip to main content
Log in

Diagnostic and prognostic value of colony formation of hematopoietic progenitor cells in myeloid malignancies

Diagnostische und prognostische Bedeutung von koloniebildenden hämatopoetischen Vorläuferzellen in myeloischen Systemerkrankungen

  • Review Article
  • Published:
Wiener Klinische Wochenschrift Aims and scope Submit manuscript

Zusammenfassung

Hämatopoetische Vorläuferzellen des Knochenmarkes und des peripheren Blutes können im semisoliden Medium unter dem Einfluss von spezifischen Wachstumsfaktoren Kolonien ausbilden, die aus terminal differenzierten Blutzellen bestehen. Diese sogenannten „colony assays” wurden in den vergangenen Jahrzehnten zur Erforschung der normalen und malignen Hämatopoese eingesetzt. So kann mit Hilfe der colony assays das Wachstum und die Differenzierung der hämatopoetischen Vorläuferzellen unter dem Einfluss positiver oder negativer regulatorischer Moleküle untersucht werden. Überdies leisten die colony assays aber auch einen wichtigen Beitrag zur Diagnostik von hämatologischen Systemerkrankungen wie der aplastischen Anämie, der myelodysplastischen Syndrome und der myeloproliferativen Syndrome. Der vorliegende Artikel umreißt unser aktuelles Wissen über die diagnostische und prognostische Bedeutung der hämatopoetischen Vorläuferzellen im peripheren Blut und Knochenmark in myeloischen Systemerkrankungen.

Summary

Hematopoietic progenitor cells are capable of forming colonies of mature blood cells in semisolid media in response to specific growth factors. Colony assays have been extensively used for many years to study normal and malignant hematopoiesis in vitro. In fact, these assays have provided an excellent research tool for investigating growth and differentiation of progenitor cells in response to positive and negative regulators of hematopoiesis. However, apart from their role in basic research, colony assays are also widely used in routine clinical practice in the diagnosis of various hematologic disorders, such as aplastic anemia, myelodysplastic syndromes and myeloproliferative disorders. This review summarizes our current knowledge on the diagnostic value and prognostic significance of the growth of progenitor cells in peripheral blood and bone marrow in patients with myeloid malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bradley TR, Metcalf D (1966) The growth of mouse bone marrow cells in vitro. Aust J Exp Biol Med Sci 44: 287–299

    PubMed  CAS  Google Scholar 

  2. Pluznik DH, Sachs L (1966) The induction of clones of normal mast cells by a substance from conditioned medium. Exp Cell Res 1966 43: 553–563

    CAS  Google Scholar 

  3. Wu AM, Till JE, Siminovitch L, McCulloch EA (1966) A cytological study of the capacity for differentration of normal hematopoietic colony-forming cells. J Cell Physiol 69: 177–184

    Google Scholar 

  4. Ichikawa Y, Pluznik DH, Sachs L (1966) In vitro control of the development of macrophage and granulocyte colonies. Proc Natl Acad Sci USA 56: 488–495

    PubMed  CAS  Google Scholar 

  5. Chervenick PA, Boggs DR (1971) In vitro growth of granulocytic and mononuclear cell colonies from blood of normal individuals. Blood 37: 131–135

    PubMed  CAS  Google Scholar 

  6. Wu AM, Siminovitch L, Till JE, McCulloch EA (1968) Evidence for a relationship between mouse hemopoietic stem cells and cells forming colonies in culture. Proc Natl Acad Sci USA 59: 1209–1215

    PubMed  CAS  Google Scholar 

  7. Paran M, Sachs L (1969) The single cell origin of normal granulocyte colonies in vitro. J Cell Physiol 73: 91–92

    PubMed  CAS  Google Scholar 

  8. Emerson SG, Thomas S, Ferrara JL, Greenstein JL (1989) Developmental regulation of erythropoiesis by hematopoietic growth factors: analysis on populations of BFU-E from bone marrow, peripheral blood, and fetal liver. Blood 74: 49–55

    PubMed  CAS  Google Scholar 

  9. Metcalf D (1968) Potentiation of bone marrow colony growth in vitro by the addition of lymphoid or bone marrow cells. J Cell Physiol 72: 9–19

    PubMed  CAS  Google Scholar 

  10. Foster R Jr, Metcalf D, Robinson WA, Bradley TR (1968) Bone marrow colony stimulating activity in human sera. Results of two independent surveys in Buffalo and Melbourne. Br J Haematol 15: 147–159

    PubMed  Google Scholar 

  11. Robinson WA, Stanley ER, Metcalf D (1969) Stimulation of bone marrow colony growth in vitro by human urine. Blood 33: 396–399

    PubMed  CAS  Google Scholar 

  12. Foster R Jr, Metcalf D, Kirchmyer R (1968) Induction of bone marrow colony-stimulating activity by a filterable agent in leukemic and normal mouse serum. J Exp Med 127: 853–866

    PubMed  Google Scholar 

  13. Sheridan JW, Metcalf D (1973) A low molecular weight factor in lung-conditioned medium stimulating granulocyte and monocyte colony formation in vitro. J Cell Physiol 81: 11–23

    PubMed  CAS  Google Scholar 

  14. Metcalf D (1990) The colony stimulating factors. Cancer 65: 2185–2195

    PubMed  CAS  Google Scholar 

  15. Welte K, Platzer E, Lu L, Gabrilove JL, Levi E, Mertelsmann R, Moore MA (1985) Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc Natl Acad Sci USA 82: 1526–1530

    PubMed  CAS  Google Scholar 

  16. Fung MC, Hapel AJ, Ymer S, Cohen DR, Johnson RM, Campbell HD, Young IG (1984) Molecular cloning of cDNA for murine interleukin-3. Nature 307: 233–237

    PubMed  CAS  Google Scholar 

  17. Souza LM, Boone TC, Gabrilove J, Lai PH, Zsebo KM, Murdock DC, Chazin VR, Bruszewski J, Lu H, Chen KK, et al (1986) Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science 232: 61–65

    PubMed  CAS  Google Scholar 

  18. Wong GG, Witek JS, Temple PA, Wilkens KM, Leary AC, Luxenberg DP, Jones SS, Brown EL, Kay RM, Orr EC, et al (1985) Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins. Science 228: 810–815

    PubMed  CAS  Google Scholar 

  19. Bradley TR, Robinson W, Metcalf D (1967) Colony production in vitro by normal polycythaemic and anaemic bone marrow. Nature 214: 511

    PubMed  CAS  Google Scholar 

  20. Stephenson JR, Axelrad AA, McLeod DL, Shreeve MM (1971) Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci USA 68: 1542–1546

    PubMed  CAS  Google Scholar 

  21. Reissmann KR, Samorapoompichit S (1970) Effect of erythropoietin on proliferation of erythroid stem cells in the absence of transplantable colony-forming units. Blood 36: 287–296

    PubMed  CAS  Google Scholar 

  22. Gregory CJ, McCulloch EA, Till JE (1973) Erythropoietic progenitors capable of colony formation in culture: state of differentiation. J Cell Physiol 81: 411–420

    PubMed  CAS  Google Scholar 

  23. Geissler K, Stockenhuber F, Kabrna E, Hinterberger W, Balcke P, Lechner K (1989) Recombinant human erythropoietin and hematopoietic progenitor cells in vivo. Blood 73: 2229–22323

    PubMed  CAS  Google Scholar 

  24. Fauser AA, Messner HA (1979) Identification of megakaryocytes, macrophages, and eosinophils in colonies of human bone marrow containing neutrophilic granulocytes and erythroblasts. Blood 53: 1023–1027

    PubMed  CAS  Google Scholar 

  25. Worton RG, McCulloch EA, Till JE (1969) Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J Exp Med 130: 91–103

    PubMed  CAS  Google Scholar 

  26. Gregory CJ, McCulloch EA, Till JE (1973) Erythropoietic progenitors capable of colony formation in culture: state of differentiation. J Cell Physiol 81: 411–420.

    PubMed  CAS  Google Scholar 

  27. Wu AM, Till JE, Siminovitch L, McCulloch EA (1968) Cytological evidence for a relationship between normal hemotopoietic colony-forming cells and cells of the lymphoid system. J Exp Med 127: 455–464

    PubMed  CAS  Google Scholar 

  28. Korn AP, Henkelman RM, Ottensmeyer FP, Till JE (1973) Investigations of a stochastic model of haemopoiesis. Exp Hematol 1: 362–375

    PubMed  CAS  Google Scholar 

  29. Breems DA, Blokland EA, Neben S, Ploemacher RE (1994) Frequency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia 8: 1095–1104

    PubMed  CAS  Google Scholar 

  30. Theilgaard-Monch K, Raaschou-Jensen K, Heilmann C, Andersen H, Bock J, Russel CA, Vindelov L, Jacobsen N, Dickmeiss E (1999) A comparative study of CD34+ cells, CD34+ subsets, colony forming cells and cobblestone area forming cells in cord blood and bone marrow allo grafts. Eur J Haematol 62: 174–183

    PubMed  CAS  Google Scholar 

  31. Zhang XB, Li K, Fok TF, Li CK, James AE, Lam AC, Lee SM, Yuen PM (2002) Cobblestone area-forming cells, long-term culture-initiating cells and NOD/SCID repopulating cells in human neonatal blood: a comparison with umbilical cord blood. Bone Marrow Transplant 30: 557–564

    PubMed  CAS  Google Scholar 

  32. Verfaillie CM, Miller JS (1995) A novel single-cell proliferation assay shows that long-term culture-initiating cell (LTC-IC) maintenance over time results from the extensive proliferation of a small fraction of LTC-IC. Blood 86: 2137–2145

    PubMed  CAS  Google Scholar 

  33. Namikawa R, Weilbaecher KN, Kaneshima H, Yee EJ, McCune JM (1990) Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med 172: 1055–1063

    PubMed  CAS  Google Scholar 

  34. Lapidot T, Pflumio F, Doedens M, Murdoch B, Williams DE, Dick JE (1992) Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice. Science 255: 1137–1141

    PubMed  CAS  Google Scholar 

  35. Broxmeyer HE, Lu L, Platzer E, Feit C, Juliano L, Rubin BY (1983) Comparative analysis of the influences of human gamma, alpha, and beta interferons on human multi-potential (CFU-GEMM), erythroid (BFU-E), and granulocyte-macrophage (CFU-GM) progenitor cells. J Immunol 131: 1300

    PubMed  CAS  Google Scholar 

  36. Zoumbos NC, Djeu JY, Young NS (1984) Interferon is the suppressor of hematopoiesis generated by stimulated lymphocytes. J Immunol 133: 769

    PubMed  CAS  Google Scholar 

  37. Schooley JC, Kullgren B, Allison AC (1987) Inhibition by interleukin-1 of the action of erythropoietin on erythroid precursors and ist possible role in the pathogenesis of hypoplastic anemias. Br J Haematol 67: 11

    PubMed  CAS  Google Scholar 

  38. Tracy KJ, Wie H, Manoque KR, Fong J, Hesse DG, Nguyen HT, Kuo GC, Beutler B, Cotran RS, Cerami A, Lowry SF (1988) Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation J Exp Med 167: 1211

    Google Scholar 

  39. Johnson CS, Cook CA, Furmanski P (1990) In vivo suppression of erythropoiesis by tumor necrosis factor-alpha (TNF-alpha): reversal with exogenous erythropoietin (EPO). Exp Hematol 18: 109–113

    PubMed  CAS  Google Scholar 

  40. Khoury E, Andre C, Pontvert-Delucq S, Drenou B, Baillou C, Guigon M, Najman A, Lemoine FM (1994) Tumor necrosis factor alpha (TNF alpha) downregulates c-kit pro-to-oncogene product expression in normal and acute myeloid leukemia CD34+ cells via p55 TNF alpha receptors. Blood 84: 2506–2514

    PubMed  CAS  Google Scholar 

  41. Wang CQ, Udupa KB, Lipschitz DA (1995) Interferon-gamma exerts ist negative regulatory effect primarily on the earliest stages of murine erythroid progenitor cell development. J Cell Physiol 162: 134

    PubMed  CAS  Google Scholar 

  42. Oehler L, Födinger M, Köller M, Kollars M, Reiter E, Bohle B, Skoupy S, Fritsch G, Lechner K, Geissler K (1997) Interleukin-10 inhibits spontaneous CFU-GM growth from human peripheral blood mononuclear cells by suppression of endogenous GM-CSF release. Blood 89: 1147–1153

    PubMed  CAS  Google Scholar 

  43. Oehler L, Kollars M, Bohle B, Berer A, Reiter E, Lechner K, Geissler K (1999) IL-10 inhibits BFU-E growth by suppression of endogenous GM-CSF production from T cells. Exp Hematol 27: 217–223

    PubMed  CAS  Google Scholar 

  44. Broxmeyer HE, Kim CH (1999) Regulation of hematopoiesis in a sea of chemokine family members with a plethora of redundant activities. Exp Hematol 27: 1113–1123

    PubMed  CAS  Google Scholar 

  45. Drachman JG (2000) Role of thrombopoietin in hematopoietic stem cell and progenitor regulation. Curr Opin Hematol 7: 183–190

    PubMed  CAS  Google Scholar 

  46. Zhu J, Emerson SG (2002) Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21: 3295–3313

    PubMed  CAS  Google Scholar 

  47. Robinson WA, Bradley TR, Metcalf D (1967) Effect of whole body irradiation on colony production by bone marrow cells in vitro. Proc Soc Exp Biol Med 25: 388–391

    Google Scholar 

  48. Ball JK, Hoshino S, McCarter JA (1973) Depressive effect of 7,12-dimethylbenz(alpha)anthracene and ionizing irradiation on bone marrow colony-forming cells. J Natl Cancer Inst 51: 1491–1495

    PubMed  CAS  Google Scholar 

  49. Bruce WR, Meeker BE, Powers WE, Valeriote FA (1969) Comparison of the dose- and timesurvival curves for normal hematopoietic and lymphoma colony-forming cells exposed to vinblastine, vincristine, arabinosylcytosine, and amethopterin. J Natl Cancer Inst 42: 1015–1025

    PubMed  CAS  Google Scholar 

  50. Blackett NM, Millard RE (1973) Differential effect of Myleran on two normal haemopoietic progenitor cell populations. Nature 244: 300–301

    PubMed  CAS  Google Scholar 

  51. Ratzan RJ, Moore MA, Yunis AA (1974) Effect of chloramphenicol and thiamphenicol on the in vitro colony-forming cell. Blood 43: 363–369

    PubMed  CAS  Google Scholar 

  52. Horoszewicz JS, Byrd DM, Sokal JE, Carter WA (1974) The colony-forming cell in the normal and leukemia human host: responses to streptovaricin and rifamycin SV. J Natl Cancer Inst 52: 649–652

    PubMed  CAS  Google Scholar 

  53. Horoszewicz JS, Carter WA (1974) Responses of the murine myeloid colony-forming cell to ansamycin antibiotics. Antimicrob Agents Chemother 5: 196–198

    PubMed  CAS  Google Scholar 

  54. Razek A, Valeriote F, Vietti T (1974) Survival of hematopoietic and leukemic colony-forming cells in vivo after administration of mitomycin C or porfiromycin. J Natl Cancer Inst 51: 1845–1848

    Google Scholar 

  55. Rosenblum ML, Knebel KD, Wheeler KT, Barker M, Wilson CB (1975) Development of an in vitro colony formation assay for the evaluation of in vivo chemotherapy of a rat brain tumor. In Vitro 11: 264–273

    PubMed  CAS  Google Scholar 

  56. Briganti G, Galloni L, Levi G, Spalletta V, Mauro F (1975) Effects of bleomycin on mouse bone-marrow stem cells. J Natl Cancer Inst 55: 53–57

    PubMed  CAS  Google Scholar 

  57. Yunis AA, Gross MA (1975) Drug-induced inhibition of myeloid colony growth: protective effect of colony-stimulating factor. J Lab Clin Med 86: 499–504

    PubMed  CAS  Google Scholar 

  58. Geissler K, Tricot G, Leemhuis T, Walker E, Broxmeyer HE (1989) Differentiation-inducing effect of recombinant human tumor necrosis factor alpha and gamma-interferon in vitro on blast cells from patients with acute myeloid leukemia and myeloid blast crisis of chronic myeloid leukemia. Cancer Res 49: 3057–3062

    PubMed  CAS  Google Scholar 

  59. Geissler K, Öhler L, Födinger M, Virgolini I, Leimer M, Kabrna E, Kollars M, Skoupy S, Bohle B, Rogy M, Lechner K (1996) Interleukin-10 inhibits growth and granulocyte/macrophage colony-stimulating factor production in chronic myelomonocytic leukemia cells. J Exp Med 184: 1–8

    Google Scholar 

  60. Geissler K, Ohler L, Fodinger M, Kabrna E, Kollars M, Skoupy S, Lechner K (1998) Interleukin-10 inhibits erythropoietin-independent growth of erythroid bursts in patients with polycythemia vera. Blood 92: 1967–1972

    PubMed  CAS  Google Scholar 

  61. The Italian Cooperative Study Group on Chronic Myeloid Leukemia (1994) Interferon alfa-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med 330: 820–825

    Google Scholar 

  62. Tura S, Baccarani M (1995) Alpha-interferon in the treatment of chronic myeloid leukemia. The Italian Cooperative Study Group on Chronic Myeloid Leukemia. Blood 85: 2999–3002

    PubMed  CAS  Google Scholar 

  63. Socinski MA, Cannistra SA, Elias A, Antman KH, Schnipper L, Griffin JD (1988) Granulocyte-macrophage colony stimulating factor expands the circulating haemopoietic progenitor cell compartment in man. Lancet 28: 1194–1198

    Google Scholar 

  64. Emminger W, Emminger-Schmidmeier W, Hocker P, Hinterberger W, Gadner H (1989) Myeloid progenitor cells (CFU-GM) predict engraftment kinetics in autologous transplantation in children. Bone Marrow Transplant 4: 415–420

    PubMed  CAS  Google Scholar 

  65. Öhler L, Scholten C, Reiter E, Tiefengraber E, Jäger U, Lechner K, Höcker P, Geissler K (1993) Mobilisierung zirkulierender hämatopoetischer Stammzellen durch G-CSF nach Chemotherapie bei multiplem Myelom. Wien Klin Wochenschr 105: 580–584

    PubMed  Google Scholar 

  66. Geissler K, Peschel Ch, Niederwieser D, Goldschmitt J, Hladik F, Fritz A, Öhler L, Bettelheim P, Huber Ch, Lechner K, Höcker P, Kolbe K (1995) Effect of interleukin-3 pretreatment on granulocyte/macrophage colony-stimulating factor induced mobilization of circulating haematopoietic progenitor cells. Br J Haematol 91: 299–305

    PubMed  CAS  Google Scholar 

  67. Geissler K, Peschel Ch, Niederwieser D, Strobl H, Goldschmitt J, Öhler L, Bettelheim P, Kahls P, Huber Ch, Lechner K, Höcker P, Kolbe K (1996) Potentiation of granulocyte colony-stimulating factor-induced mobilization of circulating progenitor cells by seven-day pretreatment with interleukin-3. Blood 87: 2732–2739

    PubMed  CAS  Google Scholar 

  68. Hinterberger W, Geissler K, Fischer M, Lechner K, Kabrna E (1985) Aplastic anemia: assessment of myeloid progenitor cells in the bone marrow and blood provides prognostic information. Acta Haematol 73: 1–5

    PubMed  CAS  Google Scholar 

  69. Gussetis ES, Peristeri J, Kitra V, Liakopoulou T, Kattamis A, Graphakos S (1998) Clinical value of bone marrow cultures in childhood pure red cell aplasia. J Pediatr Hematol Oncol 20: 120–124

    PubMed  CAS  Google Scholar 

  70. Issaragrisil S, U-pratya Y, Yimyam M, Pakdeesuwan K, Khuhapinant A, Muangsup W, Pattanapanyasat K (1998) Hematopoietic progenitor cells in the blood and bone marrow in various hematologic disorders. Stem Cells 16 [Suppl 1]: 123–128

    PubMed  Google Scholar 

  71. Podesta M, Piaggio G, Frassoni F, Pitto A, Zikos P, Sessarego M, Abate M, Teresa Van Lint M, Berisso G, Bacigalupo A (1998) The assessment of the hematopoietic reservoir after immunosuppressive therapy or bone marrow transplantation in severe aplastic anemia. Blood 91: 1959–1965

    PubMed  CAS  Google Scholar 

  72. Matsuo Y, Iwanaga M, Mori H, Yoshida S, Kawaguchi Y, Yakata Y, Murata K, Nagai K, Jinnai I, Matsuo T, Kuriyama K, Tomonaga M (2000) Recovery of hematopoietic progenitor cells in patients with severe aplastic anemia who obtained good clinical response with a combination therapy of immunosuppressive agents and recombinant human granulocyte colony-stimulating factor. Int J Hematol 72: 37–43

    PubMed  CAS  Google Scholar 

  73. Rabbits TH (1994) Chromosomal translocations in human cancer. Nature 372: 143–149

    Google Scholar 

  74. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, Goldstone A (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1.612 patients entered into the MRC AML 10 trial. Blood 92: 2322–2333

    PubMed  CAS  Google Scholar 

  75. Rowley JD (1999) The role of chromosome translocations in leukemogenesis. Seminars in Hematology 36 [Suppl 7]: 59–72

    PubMed  CAS  Google Scholar 

  76. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med 3: 730–735

    PubMed  CAS  Google Scholar 

  77. Senn JS, McCulloch EA, Till JE (1967) Comparison of colony-forming ability of normal and leukaemic human marrow in cell culture. Lancet 16: 597–598

    Google Scholar 

  78. Moore MAS, Metcalf D (1973) Cytogenetic analysis of human acute and chronic myeloid leukemia cells cloned in agar culture. Int J Cancer 11: 143–152

    PubMed  CAS  Google Scholar 

  79. Moore MAS, Spitzer G, Williams N, Metcalf D, Buckley J (1974) Agar culture studies in 127 cases of untreated acute leukemia: the prognostic value of reclassification of leukemia according to in vitro growth characteristics. Blood 44: 1–18

    PubMed  CAS  Google Scholar 

  80. Spitzer G, Dicke KA, Hehan EA, Smith T, McCredie KB, Barlogie B, Freireich EJ (1976) A simplified in vitro classification for prognosis in adult acute leukemia: the application of in vitro results in remission-predictive models. Blood 48: 795–807

    PubMed  CAS  Google Scholar 

  81. Löwenberg B, van Putten WLJ, Touw IP, Delwel R, Santini V (1993) Autonomous proliferation of leukemic cells in vitro as a determinant of prognosis in adult acute myeloid leukemia. N Engl J Med 328: 614–619

    PubMed  Google Scholar 

  82. Hunter AE, Rogers SY, Roberts IAG, Barrett AJ, Russell N (1993) Autonomous growth of blast cells is associated with reduced survival in acute myeloblastic leukemia. Blood 82: 899–903

    PubMed  CAS  Google Scholar 

  83. del Canizo MC, Brufau A, Almeida J, Galende J, Garcia Marcos MA, Mota A, Garcia R, Fernandez Calvo J, Ramos F, Fisac P, Orfao A, San Miguel JF (1998) In vitro growth in acute myeloblastic leukemia: relationship with other clinico-biological characteristics of the disease. Br J Haematol 103: 137–142

    PubMed  Google Scholar 

  84. Öhler L, Berer A, Aletaha D, Kabrna E, Heinze G, Streubel B, Fonatsch C, Haas OA, Lechner K, Geissler K (2001) Cytogenetic risk groups in acute myeloid leukaemia differ greatly in their semi-solid colony growth. Brit J Haematol 113: 120–125

    Google Scholar 

  85. Bennett JM, Cartovsky D, Daniel MT, Flandrin G, Galton DAG, Gralnick HR, Sultan C (1982) Proposals for the classification of myelodysplastic syndroms. Br J Haematol 51: 189–199

    PubMed  CAS  Google Scholar 

  86. Dupont JM, Fontenay-Roupie M, Dupuy O, Lebarr A, Le Tessier D, Auvinet P, Rabineau D, Fichelson S (1998) Fluorescence in situ hybridization on methylcellulose cultured hematopoietic stem cells from myelodysplastic syndromes. Cancer Genetics and Cytogenetics 101: 12–15

    PubMed  CAS  Google Scholar 

  87. Ruutu T, Partanen S, Litula R, Teerenhovi L, Knuutila S (1984) Erythroid and granulocyte-macrophage colony formation in myelodysplastic syndromes. Scand J Haematol 32: 395–402

    PubMed  CAS  Google Scholar 

  88. Tennant GB, Jacobs A, Bailey-Wood R (1986) Peripheral blood granulocyte-macrophage progenitors in patients with the myelodysplastic syndromes. Exp Hematol 14: 1063–1068

    PubMed  CAS  Google Scholar 

  89. Geissler K, Hinterberger W, Jager U, Bettelheim P, Neumann E, Haas O, Ambros P, Chott A, Radaszkiewicz T, Lechner K (1988) Deficiency of pluripotent hemopoietic progenitor cells in myelodysplastic syndromes. Blut 57: 45–49

    PubMed  CAS  Google Scholar 

  90. Geissler K, Hinterberger W, Bettelheim P, Haas O, Lechner K (1988) Colony growth characteristics in chronic myelomonocytic leukemia. Leuk Res 12: 373–377

    PubMed  CAS  Google Scholar 

  91. Shih LY, Chiu WF, Lee CT (1991) Diagnostic and prognostic values of in vitro culture growth patterns of marrow granulocyte-macrophage progenitors in patients with myelodysplastic syndrome. Leukemia 12: 1092–1098

    Google Scholar 

  92. Francis GE, Miller EJ, Wonke B, Wing MA, Berney JJ, Hoffbrand AV (1983) Use of bone-marrow culture in prediction of acute leukaemic transformation in preleukaemia. Lancet 25: 1409–1412

    Google Scholar 

  93. Ruutu T, Partanen S, Litula R Teerenhovi L, Knuutila S (1984) Erythroid and granulocyte-macrophage colony formation in myelodysplastic syndromes. Scand J Haematol 32: 395–402

    PubMed  CAS  Google Scholar 

  94. Raymakers R, Preijers F, Boezeman J, Rutten E, De Witte T (1994) Prognostic implications of bone marrow culturing in myelodysplastic syndrome: a retrospective analysis. Leuk Lymphoma 14: 111–120

    PubMed  CAS  Google Scholar 

  95. Tefferi A (2001) Chronic myeloid disorders: classification and treatment overview. Semin Hematol 38: 1–4

    PubMed  CAS  Google Scholar 

  96. Nowell PC, Hungerford PA (1960) A minutes chromosome in human granulocytic leukemia. Science 132: 1497

    Google Scholar 

  97. Carella AM, Frassoni F, Melo J, Sawyers C, Eaves C, Eaves A, Apperley J, Tura S, Hehlmann R, Reiffers J, Lerma E, Goldman J (1997) New insights in biology and current therapeutic options for patients with chronic myelogenous leukemia. Haematologica 82: 478–495

    PubMed  CAS  Google Scholar 

  98. Chervenick PA, Ellis LD, Pan SR, Lawson AL (1971) Human leukemic cells: in vitro growth of colonies containing the Philadelphia (Ph1) chromosome. Science 174: 1134–1136

    PubMed  CAS  Google Scholar 

  99. Lechner K, Geissler K, Gisslinger H (1999) Polycythaemia vera — diagnosis and therapy. Wien Klin Wochenschr 111: 582–589

    PubMed  CAS  Google Scholar 

  100. Weinberg RS (1997) In vitro erythropoiesis in polycythemia vera and other myeloproliferative disorders. Semin Hematol 34: 64–69

    PubMed  CAS  Google Scholar 

  101. Lutton JD, Levere RD (1979) Endogenous erythroid colony formation by peripheral blood mononuclear cells from patients with myelofibrosis and polycythemia vera. Acta Haematol 62: 94–99

    PubMed  CAS  Google Scholar 

  102. de Wolf JT, Beentjes JA, Esselink MT, Smit JW, Halie RM, Clark SC, Vellenga E (1989) In polycythemia vera human interleukin 3 and granulocyte-macrophage colony-stimulating factor enhance erythroid colony growth in the absence of erythropoietin. Exp Hematol 17: 981–983

    PubMed  Google Scholar 

  103. Dai CH, Krantz SB, Means RT Jr, Horn ST, Gilbert HS (1991) Polycythemia vera blood burst-forming units-erythroid are hypersensitive to interleukin-3. J Clin Invest 87: 391–396

    PubMed  CAS  Google Scholar 

  104. Dai CH, Krantz SB, Dessypris EN, Means RT Jr, Horn ST, Gilbert HS (1992) Polycythemia vera. II. Hypersensitivity of bone marrow erythroid, granulocyte-macrophage, and megakaryocyte progenitor cells to interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood 80: 891–899

    PubMed  CAS  Google Scholar 

  105. Mirza AM, Ezzat S, Axelrad AA (1997) Insulin-like growth factor binding protein-1 is elevated in patients with polycythemia vera and stimulates erythroid burst formation in vitro. Blood 89: 1862–1869

    PubMed  CAS  Google Scholar 

  106. Weinberg RS, Worsley A, Gilbert HS, Cuttner J, Berk PD, Alter BP (1989) Comparison of erythroid progenitor cell growth in vitro in polycythemia vera and chronic myelogenous leukemia: only polycythemia vera has endogenous colonies. Leuk Res 13: 331–338

    PubMed  CAS  Google Scholar 

  107. Biljanovic-Paunovic L, Ruvidic R, Pavlovic-Kentera V (1990) Endogenous BFU-E in peripheral blood in diagnosis of polycythemia vera. Eur J Haematol 45: 262–266

    PubMed  CAS  Google Scholar 

  108. Shih LY, Lee CT (1994) Identification of masked polycythemia vera from patients with idiopathic marked thrombocytosis by endogenous erythroid colony assay. Blood 83: 744–748

    PubMed  CAS  Google Scholar 

  109. Michiels JJ, Juvonen E (1997) Proposal for revised diagnostic criteria of essential thrombocythemia and polycythemia vera by the Thrombocythemia Vera Study Group. Semin Thromb Hemost 23: 339–347

    PubMed  CAS  Google Scholar 

  110. Michiels JJ, Thiele J (2002) Clinical and pathological criteria for the diagnosis of essential thrombocythemia, polycythemia vera, and idiopathic myelofibrosis (agnogenic myeloid metaplasia). Int J Hematol 76: 133–145

    PubMed  Google Scholar 

  111. Kimura H, Ishibashi T, Sato T, Matsuda S, Uchida T, Kariyone S (1987) Megakaryocytic colony formation (CFU-Meg) in essential thrombocythemia: quantitative and qualitative abnormalities of bone marrow CFU-Meg. Am J Hematol 24: 23–30

    PubMed  CAS  Google Scholar 

  112. Mazur EM, Cohen JL, Bogart L (1988) Growth characteristics of circulating hematopoietic progenitor cells from patients with essential thrombocythemia. Blood 71: 1544–1550

    PubMed  CAS  Google Scholar 

  113. Han ZC, Briere J, Abgrall JF, Sensebe L, Parent D, Guem G (1989) Characteristics of megakaryocyte colony formation in normal individuals and in primary thrombocythemia: studies using an optimal cloning system. Exp Hematol 17: 46–52

    PubMed  CAS  Google Scholar 

  114. Ciaudo M, Hadjez JM, Teyssandier I, Coly E, Zittoun R, Marie JP (1998) Prognostic and diagnostic value of endogenous erythroid colony formation in essential thrombocythemia. Hematol Cell Ther 40: 171–174

    PubMed  CAS  Google Scholar 

  115. Mi JQ, Blanc-Jouvan F, Wang J, Sotto MF, Cousin F, Castinel A, Chauvet M, Sotto JJ, Polack B, Mossuz P (2001) Endogenous megakaryocytic colony formation and thrombopoietin sensitivity of megakaryocytic progenitor cells are useful to distinguish between essential thrombocythemia and reactive thrombocytosis. J Hematother Stem Cell Res 10: 405–409

    PubMed  CAS  Google Scholar 

  116. Barosi G, Berzuini C, Liberato LN, Costa A, Polino G, Ascari E (1988) A prognostic classification of myelofibrosis with myeloid metaplasma. Br J Haematol 70: 397–401

    PubMed  CAS  Google Scholar 

  117. Smith BD, Moltinero AR (2001) Biology an management of idiopathic myelofibrosis. Curr Opin Oncol 13: 91–94

    PubMed  CAS  Google Scholar 

  118. Le Bousse-Kerdiles MC, Chevillard S, Charpentier A, Romquin N, Clay D, Smadja-Joffe F, Praloran V, Dupriez B, Demory JL, Jasmin C, Martyre MC (1996) Differential expression of transforming growth factor-β, basic fibroblast growth factor, and their receptors in CD34+ hematopoietic progenitor cells from patients with myelofibrosis and myeloid metaplasia. Blood 88: 4534–4546

    PubMed  Google Scholar 

  119. Chervenick PA (1973) Increase in circulating stem cells in patients with myelofibrosis. Blood 41: 67–71

    PubMed  CAS  Google Scholar 

  120. Hibbin JA, Njoku OS, Matutes E, Lewis SM, Goldman JM (1984) Myeloid progenitor cells in the circulation of patients with myelofibrosis and other myeloproliferative disorders. Br J Haematol 57: 495–503

    PubMed  CAS  Google Scholar 

  121. Charbord P, Neel H (1985) Density of granulomonocytic colony-forming cells (GM-CFC’s) in myelofibrosis. Scand J Haematol 35: 394–398

    PubMed  CAS  Google Scholar 

  122. Barosi G (1999) Myelofibrosis with myeloid metaplasia: diagnostic definition and prognostic classification for clinical studies and treatment guidelines. J Clin Oncol 17: 2954–2970

    PubMed  CAS  Google Scholar 

  123. Andreasson B, Swolin B, Kutti J, (2002) Patients with idiopathic myelofibrosis show increased CD34+ cell concentrations in peripheral blood compared to patients with polycythaemia vera and essential thrombocythaemia. Eur J Haematol 68: 189–193

    PubMed  Google Scholar 

  124. Barosi G, Viarengo G, Pecci A, Rosti V, Piaggio G, Marchetti M, Frassoni F (2001) Diagnostic and clinical relevance of the number of circulating CD34(+) cells in myelofibrosis with myeloid metaplasia. Blood 98: 3249–3255

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopold Öhler MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Öhler, L., Geissler, K. & Hinterberger, W. Diagnostic and prognostic value of colony formation of hematopoietic progenitor cells in myeloid malignancies. Wien Klin Wochenschr 115, 537–546 (2003). https://doi.org/10.1007/BF03041036

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03041036

Schlüsselwörter

Key words

Navigation