Skip to main content
Log in

Volume measurement with magnetic resonance imaging of hippocampus-amygdala formation in patients with anorexia nervosa

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The purpose of our work was to evaluate the volume of hippocampus-amygdala formation (HAF) in patients with anorexia nervosa (AN), being this structure a crucial target for the glucocorticoid action in the adaptative stress-response. AN patients have biochemical hypercortisolism associated to normal ACTH levels, but do not develop the characteristic clinical features of glucocorticoid hypersecretion. Furthermore, in these patients cortisol levels usually do not suppress after dexametasone challenge. Twenty AN females (aged 30.0±5.1) with 10.5±4.2 yr of disease underwent a brain magnetic resonance (MR) examination during the recovery phase; an agematched control group (CG) of 20 healthy female volunteers was also studied. Two interleaved T1-weighted spin-echo sequences for 46 contiguous 2-mm coronal slices (pixel 0.982 mm) were used. The volumes of both right and left HAFs were calculated with manual contouring from the third ventricle to the Sylvian aqueduct. IGF-I, T3, gonadotropins, 24-h urine free cortisol, and BMI were obtained for both patients (on admission and on present evaluation) and CG. Mann-Whitney, Wilcoxon and Spearman tests were used. AN patients showed a significant (p=0.0001) reduction of total (right plus left) HAF volume (6.6±1.3 cm3) when compared with CG (8.9±1.1). No significant difference was found between right and left HAF in both patients and CG. In AN patients, no significant correlation was found between the HAF and all the hormonal parameters or BMIs, while a trend towards significance was observed with duration of the disease (r=−0.398; p=0.082). MR imaging demonstrated a significant volume reduction of HAF in AN patients during the recovery phase of the disease, suggesting a possible causal role in the pathogenesis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Garner D.M. Pathogenesis of anorexia nervosa. Lancet 1993, 34: 1631–1635.

    Article  Google Scholar 

  2. Katzman D.K., Lambe E.K., Mikulis D.J., Ridgley J.N., Goldbloom D.S., Zipursky R.B. Cerebral gray matter and white matter volume deficits in adolescent girls with anorexia nervosa. J. Pediatr. 1996, 129: 794–803.

    Article  CAS  PubMed  Google Scholar 

  3. Lambe E.K., Katzman D.K., Mikulis D.J., Kennedy S.H., Zipursky R.B. Cerebral gray matter volume deficits after weight recovery from anorexia nervosa. Arch. Gen. Psychiatry 1997, 54: 537–542.

    Article  CAS  PubMed  Google Scholar 

  4. Herholz K. Neuroimaging in anorexia nervosa. Psychiatry Res. 1996, 62: 105–110.

    Article  CAS  PubMed  Google Scholar 

  5. Kingston K., Szmukler G., Andrewes D., Tress B., Desmond P. Neuropsychological and structural brain changes in anorexia nervosa before and after refeeding. Psychol. Med. 1996, 26: 15–28.

    Article  CAS  PubMed  Google Scholar 

  6. Swayze V.W. II, Andersen A., Arndt S., Rajarethinam R., Fleming F., Soto Y., Andrease N.C. Reversibility of brain tissue loss in anorexia nervosa assessed with a computerized Talairach 3-D proportional grid. Psychol. Med. 1996, 26: 381–390.

    Article  PubMed  Google Scholar 

  7. Katzman D.K., Zipursky R.B., Lambe E.K., Mikulis D.J. A longitudinal magnetic resonance imaging study of brain changes in adolescents with anorexia nervosa. Arch. Pediatr. Adolesc. Med. 1997, 151: 793–797.

    Article  CAS  PubMed  Google Scholar 

  8. Golden N.H., Ashtari M., Kohn M.R., Patel M., Jacobson M.S., Fletcher A., Shenker I.R. Reversibility of cerebral ventricular enlargement in anorexia nervosa, demonstrated by quantitative magnetic resonance imaging. J. Pediatr. 1996, 128: 296–301.

    Article  CAS  PubMed  Google Scholar 

  9. De Kloet E.R., Vreugdenhil E., Oitzl M.S., Joels M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 1998, 19: 269–301.

    PubMed  Google Scholar 

  10. Reul J.M.H.M., De Kloet E.R. Two receptor systems for corticosteroids in rat brain. Endocrinology 1985, 117: 2505–2511.

    Article  CAS  PubMed  Google Scholar 

  11. Sapolsky R.M. Why stress is bad for your brain. Science 1996, 273: 749–750.

    Article  CAS  PubMed  Google Scholar 

  12. Sheline Y.I., Wang Po W., Gado M.H., Csernansky J.G., Vannier M.W. Hippocampal atrophy in recurrent major depression. Proc. Natl. Acad. Sci. USA 1996, 93: 3908–3913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. American Psychiatric Association. DSM-IV draft criteria 3/1/93 task force of DSM IV Diagnostic and Statistical Manual of Mental Disorders. American Psychiatric Association, Washington, DC, USA, 1993.

    Google Scholar 

  14. Armanini D., Spinella P., Simoncini M., Basso A., Zovato S., De Palo C.B., Bucciante G., Karbowiak I. Regulation of corticosteroids receptors in patients with anorexia nervosa and Cushing’s disease. J. Endocrinol. 1998, 158: 435–439.

    Article  CAS  PubMed  Google Scholar 

  15. Invitti C., Redaelli G., Baldi G., Cavagnini F. Glucocorticoids receptors in anorexia nervosa and Cushing’s disease. Biol. Psychiatry 1999, 45: 1467–1471.

    Article  CAS  PubMed  Google Scholar 

  16. Hamilton M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23: 56–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Becker T., Elmer K., Schneider F., Schneider M., Grodd W., Bartels M., Heckers S., Beckmann H. Confirmation of reduced temporal limbic structure volume on magnetic resonance imaging in male patients with schizophrenia. Psychiatry Res. 1996, 67: 135–143.

    Article  CAS  PubMed  Google Scholar 

  18. Colombo C., Abbruzzese M., Livian S., Scotti G., Locatelli M., Bonfanti A., Scarone S. Memory functions and temporal-limbic morphology in schizophrenia. Psychiatry Res. 1993, 50: 45–56.

    Article  CAS  PubMed  Google Scholar 

  19. Artmann H., Grau H., Adelmann M., Schleiffer R. Reversible and non-reversible enlargement of cerebrospinal fluid spaces in anorexia nervosa. Neuroradiology 1985, 27: 304–312.

    Article  CAS  PubMed  Google Scholar 

  20. McEwen B.S. Protective and damaging effects of stress mediators. N. Engl. J. Med. 1998, 338: 171–179.

    Article  PubMed  Google Scholar 

  21. Jacobson L., Sapolsky R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr. Rev. 1991, 12: 118–134.

    Article  CAS  PubMed  Google Scholar 

  22. Herman J.P., Cullinan W.E. Neurocircuitry of stress: central control of the hypothalamo- pituitary-adrenocortical axis. Trends Neurosci. 1997, 20: 78–84.

    Article  CAS  PubMed  Google Scholar 

  23. Issa A.M., Rowe W., Gauthier S., Meaney M.J. Hypotalamic-pituitary-adrenal activity in aged cognitively impaired and cognitively unimpaired rats. J. Neurosci. 1990, 10: 3247–3253.

    CAS  PubMed  Google Scholar 

  24. Meaney M.J., Aitken D.H, van Berkel C., Bhanagar S., Sapolsky R.M. Effect of neonatal handling of age-related impairments associated with the hippocampus. Science 1988, 239: 766–768.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Sardanelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giordano, G.D., Renzetti, P., Parodi, R.C. et al. Volume measurement with magnetic resonance imaging of hippocampus-amygdala formation in patients with anorexia nervosa. J Endocrinol Invest 24, 510–514 (2001). https://doi.org/10.1007/BF03343884

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03343884

Key-words

Navigation