Skip to main content
Log in

Blood:Bone disequilibrium. VI. Studies of the solubility characteristics of brushite: Apatite mixtures and their stabilization by noncollagenous proteins of bone

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

Recent evidence of the occurrence of brushite in newly formed bone mineral prompted a study of the solubility properties of brushite:apatite mixtures under physiological conditions and the influence on them of pH, lactate, pyruvate, and, particularly, noncollagenous bone proteins (NCBPs). Brushite alone was surprisingly stable in solution at pH 7.4, 37°C. In the presence of increasing amounts of apatite, hydrolysis of brushite to an insoluble phase occurred. A decrease of 0.1 pH unit or the addition of 1.5 mM pyruvate or 10 mM lactate increased the ion activity product (Ca2+×HPO 2−4 ) 3 or more times. However, within the loose envelope of bone such conditions so different from those in the circulation might be only local or temporary. NCBPs, on the other hand, stabilized brushite in solution alone as well as in the presence of apatite for days. They probably act by adsorbing strongly to the crystal surface and preventing nucleation by apatite. This brushite-apatite-bone protein system exhibits solubility characteristics that can resolve the old problems presented by the participation of the skeleton in extracellular calcium homeostasis on the one hand, and by the apparent insolubility of the apatite mineral of bone on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wendt GH, Clark AH (1923) An electrometric study of the neutralization of phosphoric acid by calcium hydroxide. J Am Chem Soc 45:881–887

    Article  CAS  Google Scholar 

  2. Holt LE Jr, LaMer VK, Chown HB (1925) Studies of calcification. I. The solubility product of secondary and tertiary calcium phosphate under various conditions. J Biol Chem 64:509–587

    CAS  Google Scholar 

  3. Shear MJ, Kramer B (1928) Composition of bone. III. Physicochemical mechanism. J Biol Chem 79:125–145

    CAS  Google Scholar 

  4. Strates BS, Neuman WF, Levinskas GJ (1957) The solubility of bone mineral. II. Precipitation of near neutral solutions of calcium and phosphate. J Phys Chem 61:279–282

    Article  CAS  Google Scholar 

  5. Moreno EC, Brown WE, Osborn G (1960) Solubility of dicalcium dihydrate in aqueous systems. Soil Soc Am Proc 24:94–98

    Article  CAS  Google Scholar 

  6. Newesely H (1970) Factors controlling apatite crystallization with particular reference to the effect of fluoride and accompanying ions. Adv Oral Biol 4:11–42

    PubMed  CAS  Google Scholar 

  7. Herman H, Francois P, Fabry C (1961) Le compose' mineral fondamental des tissus calcifies I and II. Bull Soc Chem Biol 43:629–649

    CAS  Google Scholar 

  8. Eanes ED, Gillessen IH, Posner AS (1965) Intermediate states in the precipitation of hydroxyapatite. Nature 208:363–367

    Google Scholar 

  9. Posner AS (1969) Crystal chemistry of bone mineral. Physiol Rev 49:760–792

    PubMed  CAS  Google Scholar 

  10. Nancollas GH, Mohan MS (1970) The growth of hydroxyapatite crystals. Arch Oral Biol 15:731–745

    Article  PubMed  CAS  Google Scholar 

  11. Francis MD, Webb NC (1971) Hydroxyapatite formation from a hydrated calcium monohydrogen phosphate precursor. Calcif Tissue Res 6:335

    Article  PubMed  CAS  Google Scholar 

  12. Termine JD (1972) Mineral chemistry and skeletal biology. Clin Orthop Rel Res 85:207–241

    CAS  Google Scholar 

  13. Brown WE (1973) Solubilities of phosphates and other sparingly soluble compounds. In: Griffeth EJ, Reston A, et al (eds) Environmental Phosphorus Handbook. John Wiley & Sons, New York, pp 203–239

    Google Scholar 

  14. Wadkins CL, Luben R, Thomas M, Humphreys R (1974) Physical biochemistry of calcification. Clin Orthop 99:246–266

    PubMed  CAS  Google Scholar 

  15. Termine JD, Eanes ED, Conn KM (1980) Phosphoprotein modulation of apatite crystalization. Calcif Tissue Int 31:247–251

    Article  PubMed  CAS  Google Scholar 

  16. Moreno EC, Zahradnik RT, Glazman A, Hwu R (1977) Precipitation of hydroxyapatite from dilute solutions upon seeding. Calcif Tissue Res 24:47–57

    Article  PubMed  CAS  Google Scholar 

  17. Eanes ED, Meyer JL (1977) The maturation of crystalline calcium phosphates in aqueous suspensions at physiologic pH. Calcif Tissue Res 23:259–269

    Article  PubMed  CAS  Google Scholar 

  18. Pokric B, Pucar Z (1979) Precipitation of calcium phosphates under conditions of double diffusion in collagen and gels of gelatin and agar. Calcif Tissue Int 27:171–176

    PubMed  CAS  Google Scholar 

  19. Howland J, Kramer B (1923) A study of calcium and inorganic phosphorus of the serum in relation to rickets and tetany. Mschr Kinderheilkd 25:279–293

    Google Scholar 

  20. Neuman WF, Bareham BJ (1975) Evidence for the presence of secondary calcium phosphate in bone and its stabilization by acid production. Calcif Tissue Res 18:164–172

    Google Scholar 

  21. Sobel AE, Hanok A (1952) Calcification. VII. Reversible inactivation of calcificationin vitro and related studies. J Biol Chem 197:669–685

    PubMed  CAS  Google Scholar 

  22. Tomazic B, Tomson M, Nancollas GH (1975) Growth of calcium phosphates on hydroxyapatite crystals: the effect of magnesium. Arch Oral Biol 20:803–808

    Article  PubMed  CAS  Google Scholar 

  23. Bisaz S, Felix R, Neuman WF, Fleisch H (1978) Quantitative determination of inhibitors of calcium phosphate precipitation in whole urine. Mineral Electrolyte Metab 1:74–83

    CAS  Google Scholar 

  24. Tomazic B, Tomson M, Nancollas GH (1976) The growth of calcium phosphates on natural enamel. Calcif Tissue Res 19:263–275

    PubMed  CAS  Google Scholar 

  25. Brown WE (1966) Crystal growth of bone mineral. Clin Orthop Rel Res 44:205–220

    CAS  Google Scholar 

  26. Termine JD, Eanes ED (1974) Calcium phosphate deposition from balanced salt solutions. Calcif Tissue Res 15:81–84

    Article  PubMed  CAS  Google Scholar 

  27. Roufosse AH, Landis WJ, Sabine WK, Glimcher MJ (1979) Identification of brushite in newly deposited bone mineral from embryonic chicks. J Ultrastruct Res 68:235–255

    Article  PubMed  CAS  Google Scholar 

  28. Muenzenberg KJ, Gebhardt M (1969) Kristallographische Untersuchung der Knochenminerale. Dtsch Med Wochenschr 94:1325–1330

    Article  CAS  Google Scholar 

  29. Muenzenberg KJ, Gebhardt M (1973) Brushite, octacalcium phosphate and carbonate containing apatite in bone. Clin Orthop Rel Res 90:271–273

    Google Scholar 

  30. Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphate. Anal Chem 28:1756–1759

    Article  CAS  Google Scholar 

  31. Diamond A, Neuman WF (1979) Macromolecular inhibitors of calcium phosphate precipitation in bone. In: Suttie JW (ed) Vitamin K Metabolism and Vitamin K-dependent Proteins. University Park Press, Baltimore, pp 259–262

    Google Scholar 

  32. Menanteau J, Neuman WF, Neuman MW (1981) Noncollagenous bone proteins which effect the solubility of calcium phosphates. In: Veis A (ed) 1st International Conference on Chemistry and Biology of Mineralized Connective Tissues. Elsevier North-Holland, Amsterdam

    Google Scholar 

  33. Neuman WF, Neuman MW, Myers CR (1979) Blood:bone disequilibrum. III. Linkage between cell energetics and Ca fluxes. Am J Physiol 5:C244–248

    Google Scholar 

  34. Blumenthal NC, Posner AS, Silverman LD, Rosenberg LC (1979) Effect of proteoglycans onin vitro hydroxyapatite formation. Calcif Tissue Int 27:75–82

    PubMed  CAS  Google Scholar 

  35. Hay DI, Schlesinger DH (1977) Human salivary statherin: a peptide inhibitor of calcium phosphate precipitation. In: Wasserman RH, Corradino RH, Carifoli E, Kretsinger RH, MacLennan DH, Siegel FL (eds) Calcium-binding Proteins and Calcium Function. Elsevier North-Holland, Amsterdam, pp 401–418

    Google Scholar 

  36. Moreno EC, Varughese K, Hay DI (1979) Effect of human salivary proteins on the precipitation kinetics of calcium phosphate. Calcif Tissue Int 28:7–16

    PubMed  CAS  Google Scholar 

  37. Price PA, Otsuka AS, Poser JW, Kristaponis J, Raman N (1976) Characterization of aγ-carboxyglutamic acid containing protein from bone. Proc Natl Acad Sci USA 73:1447–1451

    PubMed  CAS  Google Scholar 

  38. Neuman WF (1975) The extracellular control of cellular metabolism in bone. In: Extra Cellular Matrix Influences on Gene Expression. Academic Press, New York, pp 693–699

    Google Scholar 

  39. Neuman WF, Neuman MW, Brommage R (1978) Aerobic glycolysis in bone:lactate production and gradients in calvaria. Am J Physiol 234:C41-C50

    PubMed  CAS  Google Scholar 

  40. Nichols FC (1981) Metabolic studies of bonein vitro and MMB-1 cells, a transformed cell line derived from bone. PhD thesis, University of Rochester, Rochester, New York

    Google Scholar 

  41. Neuman MW, Neuman WF (1980) On the measurement of water compartments, pH, and gradients in calvaria. Calcif Tissue Int 31:135–145

    Article  PubMed  CAS  Google Scholar 

  42. Cartier P (1957) Les constituants mineraux de tissus calcifies: V. Separation et identification de pyrophosphates dans le tissu osseux. Bull Soc Chim Biol 37:169–180

    Google Scholar 

  43. Dixon TF, Perkins HR (1956) Citric acid and bone. In: Bourne GH (ed) Biochemistry and Physiology of Bone. Academic Press, New York, pp 309–323

    Google Scholar 

  44. Quint P, Althof J, Hoehling HJ, Boyde A, Laabs WA (1980) Characteristic molar ratios of magnesium carbon dioxide, calcium and phosphorus in the mineralizing fracture callus and predentine. Calcif Tissue Int 32:257–261

    Article  PubMed  CAS  Google Scholar 

  45. Neuman WF, Diamond AG, Neuman MW (1980) Blood: bone disequilibrium. IV. Reciprocal effects of calcium and phosphate concentrations on ion fluxes. Calcif Tissue Int 32:229–236

    Article  PubMed  CAS  Google Scholar 

  46. Talmage RV (1969) Calcium homeostasis—calcium transport parathyroid action: The effect of parathyroid hormone on the movement of calcium between bone and fluid. Clin Orthop Rel Res 67:210–224

    Google Scholar 

  47. Ramp WK (1975) Cellular control of calcium movements in bone. Clin Orthop 106:311–322

    PubMed  Google Scholar 

  48. Terepka AR, Coleman JR, Armbrecht HJ, Gunter T (1975) Transcellular transport of calcium. In: Duncan CJ (ed) Calcium in Biological Systems. XXX Symposium of the Society for Experimental Biology. Cambridge University Press, London, pp 117–140

    Google Scholar 

  49. Aaron JE (1978) Histological aspects of the relationship between vitamin D and bone. In: Lawson DEM (ed) Vitamin D. Academic Press, New York

    Google Scholar 

  50. Appleton J, Morris DC (1979) An ultrastructural investigation of the role of the odontoblast in matrix calcification using the potassium pyroantimonate osmium method for calcium localization. Arch Oral Biol 24:467–475

    Article  PubMed  CAS  Google Scholar 

  51. Gay CV, Schraer H (1975) Frozen thin-sections of rapidly forming bone: bone cell ultrastructure. Calcif Tissue Res 19:39–49

    PubMed  CAS  Google Scholar 

  52. Kashiwa HK (1966) Calcium in cells of fresh bone stained with glyoxal bis(2-hydroxyanil). Stain Technol 41:49–55

    PubMed  CAS  Google Scholar 

  53. Kashiwa HK (1970) Calcium phosphate in osteogenic cells. Clin Orthop 70:200–211

    PubMed  CAS  Google Scholar 

  54. Kashiwa HK (1971) Mineralized spherules in the cells and matrix of calcifying cartilage from developing bone. Anat Rec 170:119–127

    Article  PubMed  CAS  Google Scholar 

  55. Remagen W, Hoehling HJ, Hall TA, Caesar R (1969) Electron microscopical and microprobe observation on the cell sheath of stimulated osteocytes. Calcif Tissue Res 4:60–68

    Article  PubMed  CAS  Google Scholar 

  56. Weisbrode SE, Capen CC, Nagode LA (1973) Fine structural and enzymatic evaluation of bone in thyroparathyroidectomized rats receiving various levels of vitamin D. Lab Invest 28:29–37

    PubMed  CAS  Google Scholar 

  57. Weisbrode SE, Capen CC, Nagode LA (1974) Influence of parathyroid hormone on ultrastructural and enzymatic changes induced by vitamin D in bone of thyroparathyroidectomized rats. Lab Invest 30:768–794

    Google Scholar 

  58. Dougherty WJ (1978) The occurrence of amorphous mineral deposits in association with the plasma membrane of active osteoblasts in rat and mouse alveolar bone. Metab Bone Dis Rel Res 1:119–123

    Article  Google Scholar 

  59. Weisbrode SE, Capen CC, Norman AW (1979) Light- and electron-microscopic evaluation of the effects of 1,25-dihydroxy vitamin D3 on bone of thyroparathyroidectomized rats. Am J Pathol 97:247–260

    PubMed  CAS  Google Scholar 

  60. Talmage RV, Matthews JL, Martin JH, Kennedy JW, Davis WL, Roycroft JH Jr (1975) Calcitonin, phosphate, and the osteocyte-osteoblast bone cell unit. In: Talmage RV, Owen M, Parsons JA (eds) Calcium Regulating Hormones. American Elsevier, New York, pp 284–296

    Google Scholar 

  61. Watt JC (1928) The development of bone. Arch Surg 17:1017–1046

    Google Scholar 

  62. Anderson HC, Howell DS (eds) (1978) Second Conference on Matrix Vesicle Calcification. Metab Bone Dis Rel Res 1:83–242

  63. Bonucci E (1967) Fine structure of early cartilage calcification. J Ultrastruct Res 20:33–50

    Article  PubMed  CAS  Google Scholar 

  64. Bonucci E (1971) The locus of initial calcification in cartilage and bone. Clin Orthop Rel Res 78:108–139

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuman, W.F., Neuman, M.W., Diamond, A.G. et al. Blood:Bone disequilibrium. VI. Studies of the solubility characteristics of brushite: Apatite mixtures and their stabilization by noncollagenous proteins of bone. Calcif Tissue Int 34, 149–157 (1982). https://doi.org/10.1007/BF02411226

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02411226

Key words

Navigation