Skip to main content
Log in

A barycentremetric study of the sagittal shape of spine and pelvis: The conditions required for an economic standing position

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The standing posture of 17 young men and women were studied using Barycentremeter measurements and full spine radiograph with a single referential system. These procedures provide in vivo measurements of the weight and center of weight supported by each vertebra and the coxofemoral joints. The relationship between the vertebra, the sacrum or the coxofemoral rotation axis and the center of weight they support, is displayed. The moment of the corresponding force may also be assessed. Mean values were computed and the relation with spine sagittal curves and pelvic parameters were studied. The position of the center of weight, in front of or behind the vertebra or the coxofemoral joints, requires an opposing muscle force to ensure mechanical stability. The load exerted on the vertebra cannot be precisely evaluated, but we can describe the way in which these loads vary when the spinal curves and the pelvic slope change. This study provides basic data suggesting that there is a tendency to maintain the body in the most economical position in terms of muscle fatigue and vertebral strain. Individual anatomical shapes and pelvic parameters of the pelvis induce corresponding specific sagittal curves of the spine. This concept is very useful for analysing pathological situations and devising appropriate treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akerblom, B. Standing and sitting posture. Vol. 1, Stockholm: A.B. Nordiska Bokhandelin; 1948; 187 pp.

    Google Scholar 

  2. Bonne, A.J. On the shape of the human vertebral column. Acta Orthop. Belg. 35:3–4, 567–583; 1969.

    Google Scholar 

  3. Cosson, P.; Desmoineaux, P.; Robain, G.; Duval-Beaupère, G. Valeurs inertielles des segments cortporels supportés par les vertèbres. Jour. Biophy. Biomec. 11 (suppl 1)52–53; 1987.

    Google Scholar 

  4. Cosson, P.; Duval-Beaupère, G. Evaluation personnalisée des forces exercées sur les vertèbres dorsales et lombaires de l'homme en position debout et assise. Proceeding Réunion Annuelle du GES, Berck. fev., 1989.

  5. Delmas, A. Types rachidiens de statique corporelle. Rev. Morphophysiol. Humaine; 1951.

  6. Delmas, A. Attitude érigée et types rachidiens de statique corporelle. In: S.D.M.S., ed. L'Attitude. Paris; 1953: 17–44.

  7. Dubousset, J.; Graf, H.; Hecquet, J. Approche tridimensionnelle des déformations rachidiennes. Application à l'étude du pronostic des scolioses infantiles. In Proceeding Annual Meeting Scoliosis Research Society and Rev. Chir. Orthop. 83:69, 407–416; 1980.

  8. During, J.; Goudfrooij, H.; Keessen, W. Toward standards for posture. Spine 10:1, 83–87; 1985.

    CAS  PubMed  Google Scholar 

  9. Duval-Beaupère, G. Le Barycentremètre, le point de la validation Clinique. Journées d'information électronique du C.E.N.; 1975.

  10. Duval-Beaupère, G. La ligne de gravité vue de profil chez le sujet normal et dans les déformations antéropostérieures du rachis. Compte rendu de la réunion commune du GES et SRS Canadien. Montréal: Mai, 1979; pp. 30–38.

  11. Duval-Beaupère, G.; Hecquet, J.; Dubousset, J.; Graf, H.; Roche, R.; Tabuteau, C.; Marin, J.; Robain, G.; Cosson, Ph. Centre of the mass supported by each vertebra on a 3-D image of the spine. EEEE/Ninth Annual Conference of the Engineering in Medicine and Biology Society. CH2513-0/87/0000-0844; 1987.

  12. Duval-Beaupère, G.; Ovazza, D.; Tisseau, J. Mise au point d'un appareillage de mesure de la masse des segments corporels et de son lieu d'application. Les actions thématiques de l'INSERM, no 6. Physiopathologie de l'artriculation. Paris: INSERM; 1976: pp. 165–177.

    Google Scholar 

  13. Duval-Beaupère, G.; Robain, G. Visualization on full spine radiographs of the anatomical connections of the centres of the segmental body mass supported by each vertebra and measuredin vivo. Intern. Orth. (SICOT). 11:261–269; 1987.

    Google Scholar 

  14. Duval-Beaupère, G.; Schmidt, C.; Cosson, P. Sagittal shape of the spine and pelvis. The conditions for an economic standing position. Barycentremetric study. Proceedings of the Annual meeting of Scoliosis Research Society combined with the European Spinal Deformity Society. Amsterdam; September 1989.

  15. Joseph, J. Man's posture. Electromyographic studies. Vol. 1, Springfield, IL; Thomas; 1960: 88 pp.

    Google Scholar 

  16. Joseph, J.; William, P. Electromyography of certain hip muscles. J. Anat. 91:286–294; 1957.

    CAS  PubMed  Google Scholar 

  17. King Liu, Y.; Monroe-Laborde, J.; Van Buskirk, W.C. Inertial properties of a segment cadaver trunk: Their implication in acceleration injuries. Aerospacial Med. 42:650–657; 1971.

    Google Scholar 

  18. Pascal, A.; Csakvary, S.; Porte, P. Le Barycentremètre MCG10 Notice technique CEA. SES/PUP/SERF: 74-237; 1974.

  19. Schultz, A.B. Biomechanical factors in the progression of idiopathic scoliosis. Ann. Biomed. Eng. 12:621–630; 1984.

    CAS  PubMed  Google Scholar 

  20. Schultz, A.B.; Ciszewski, D.J.; Dewald, R.L. Spine morphology as a determinant of progression tendency in idiopathic scoliosis. Presented before the Scoliosis Research Society: Boston, MA; 1978.

  21. Schultz, A.B.; Sorensen, S.; Anderson, G.B. Measurements of spine morphology in children, ages 10–16. Spine 9:1, 70–73; 1984.

    CAS  PubMed  Google Scholar 

  22. Staffel, F. Die menschlichen Haltungstypen und ihre Beziehungen zu den Rückgratsverkrümmungen. Wiesbaden; 1989.

  23. Stagnara, P.; de Mauroy, J.C.; Dran, G.; Gonon, G.; Costanzo, G.; Dimnet, J.; Pasquet, A. Reciprocal angulation of vertebral bodies in a sagittal plane: Approach to references for the evaluation of kyphosis and lordosis. Spine 7:4, 335–342; 1984.

    Google Scholar 

  24. Tabuteau, C.; Marin, J.; Roche, P.; Hecquet, J.; Duval-Beaupère, G. Connexion d'un micro-ordinateur et du calculateur multi 20 d'un scanner à rayon gamma dit Barycentremètre. Innov. Tech. Biol. Med. 8:6, 635–643; 1987.

    Google Scholar 

  25. Vidal, J.; Marnay, Th. Deviation sagittales du rachis, essai de classification en fonction de l'équilibre pelvien. Rev. Chir. Orthop. 70 (Suppl. 2): 124–126; 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duval-Beaupère, G., Schmidt, C. & Cosson, P. A barycentremetric study of the sagittal shape of spine and pelvis: The conditions required for an economic standing position. Ann Biomed Eng 20, 451–462 (1992). https://doi.org/10.1007/BF02368136

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368136

Keywords

Navigation