Skip to main content
Log in

Regrowth of axons in lesioned adult rat spinal cord: promotion by implants of cultured Schwann cells

  • Published:
Journal of Neurocytology

Summary

Highly purified populations of Schwann cells were grafted into lesioned adult rat spinal cord to determine if they promote axonal regeneration. Dorsal spinal cord lesions were created by a photochemical lesioning technique. Schwann cells derived from E16 rat dorsal root ganglia, either elongated and associated with their extracellular matrix or dissociated and without matrix, were rolled in polymerized collagen to form an implant 4–6 mm long which was grafted at 5 or 28 days after lesioning. No immunosuppression was used. Acellular collagen rolls served as controls. At 14, 28 and 90 days and 4 and 6 months after grafting, animals were analysed histologically with silver and Toluidine Blue stains and EM. The grafts often filled the lesion and the host borders they apposed exhibited only limited astrogliosis. By 14 days, bundles of unmyelinated and occasional thinly myelinated axons populated the periphery of Schwann cell implants. By 28 days and thereafter, numerous unmyelinated and myelinated axons were present in most grafts. Silver staining revealed sprouted axons at the implant border at 28 days and long bundles of axons within the implant at 90 days. Photographs of entire 1 μm plastic cross-sections of nine grafted areas were assembled into montages to count the number of myelinated axons at the graft midpoint; the number of myelinated axons ranged from 517–3214. Electron microscopy of implants showed typical Schwann cell ensheathment and myelination, increased myelin thickness by 90 days, and a preponderance of unmyelinated over myelinated axons. Random EM sampling of five Schwann cell grafts snowed that the ratio of unmyelinated to myelinated axons was highest (20∶1) at 28 days. These ratios implied that axons numbered in the thousands at the graft midpoint. Dissociated Schwann cells without matrix promoted axonal ingrowth and longitudinal orientation as effectively as did elongated Schwann cells accompanied by matrix. There was a suggestion that axonal ingrowth was at least as successful, if not more so, when the delay between lesioning and grafting was 28 rather than 5 days. Acellular collagen grafts did not contain axons at 28 days, the only interval assessed. In sum, grafts of Schwann cells in a rolled collagen layer filled the lesion and were well tolerated by the host. The Schwann cells stimulated rapid and abundant growth of axons into grafts and they ensheathed and myelinated these axons in the normal manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acheson, A., Barker, P. A., Alderson, R. F., Miller, F. D. &Murphy, R. A. (1991) Detection of brain-derived neurotrophic factor-like activity in fibroblasts and Schwann cells: inhibition by antibodies to NGF.Neuron 7, 265–75.

    Google Scholar 

  • Aebischer, P., Guénard, V., Winn, S. R., Valentini, R. F. &Galletti, P. M. (1988) Semi-permeable guidance channels allow peripheral nerve regeneration in the absence of a distal nerve stump.Brain Research 454, 179–87.

    Google Scholar 

  • Aebischer, P., Guénard, V. &Brace, S. (1989) Peripheral nerve regeneration through semipermeable guidance channels: effect of the molecular weight cut-off.Journal of Neuroscience,9, 3590–5.

    Google Scholar 

  • Aebischer, P., Guénard, V. &Valentini, R. F. (1990) The morphology of regenerating peripheral nerves is modulated by the surface microgeometry of polymeric guidance channels.Brain Research 351, 211–18.

    Google Scholar 

  • Aguayo, A. J. (1985) Axonal regeneration from injured neurons in the adult mammalian central nervous system. In:Synaptic Plasticity (edited byCotman, C. W.), pp. 457–84. New York: Guilford Press.

    Google Scholar 

  • Bandtlow, C. E., Heumann, R., Schwab, M. E. &Thoenen, H. (1987) Cellular localization of nerve growth factor synthesis byin situ hybridization.EMBO Journal 6, 891–9.

    Google Scholar 

  • Barde, Y.-A. (1989) Trophic factors and neuronal survival.Neuron 2, 1525–34.

    Google Scholar 

  • Berry, M., Hall, S., Follows, R., Rees, L., Gregson, N. &Sievers, J. (1988) Response of axons and glia at the site of anastomosis between the optic nerve and cellular or acellular sciatic nerve grafts.Journal of Neurocytology 17, 727–44.

    Google Scholar 

  • Bixby, J. L. &Harris, W. A. (1991) Molecular mechanisms of axon growth and guidance.Annual Review of Cell Biology 7, 117–59.

    Google Scholar 

  • Bixby, J. L., Lilien, J. &Reichardt, L. F. (1988) Identification of the major proteins that promote neuronal process outgrowth on Schwann cellsin vitro.Journal of Cell Biology 107, 353–61.

    Google Scholar 

  • Bunge, M. B. (1993) Schwann cell regulation of extracellular matrix biosynthesis and assembly. In:Peripheral Neuropathy (3rd Edition), (edited byDyck, P. J., Thomas, P. K., Griffin, J., Low, P. A. &Poduslo, J.). pp. 299–316. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Bunge, M. B., Johnson, M. I., Ard, M. D. &Kleitman, N. (1987) Factors influencing the growth of regenerating nerve fibers in culture.Progress in Brain Research 71, 61–74.

    Google Scholar 

  • Bunge, M. B., Bunge, R. P., Kleitman, N. &Dean, A. C. (1989) Role of peripheral nerve extracellular matrix in Schwann cell function and in neurite regeneration.Developmental Neuroscience 11, 348–60.

    Google Scholar 

  • Bunge, M. B., Holets, V. R., Bates, M. L., Clarke, T. S. &Watson, B. D. (1993) Characterization of photochemically induced spinal cord injury in the rat by light and electron microscopy.Experimental Neurology (in press).

  • Bunge, R. P. (1975) Changing uses of nerve tissue culture 1950–1975. In:The Nervous System. Vol.1: The Basic Neurosciences (edited byTower, D. B.), pp. 31–42. New York: Raven Press.

    Google Scholar 

  • Bunge, R. P., Bunge, M. B. &Eldridge, C. F. (1986) Linkage between axonal ensheathment and basal lamina production by Schwann cells.Annual Review of Neuroscience 9, 305–28.

    Google Scholar 

  • Cameron, T., Prado, R., Watson, B. D., Gonzalez-Carvajal, M. &Holets, V. R. (1990) Photochemically induced cystic lesion in the rat spinal cord. I. Behavioral and morphological analysis.Experimental Neurology 109, 214–23.

    Google Scholar 

  • Campenot, R. B. (1977) Local control of neurite development by nerve growth factor.Proceedings of the National Academy of Sciences (USA) 74, 4516–19.

    Google Scholar 

  • Daniloff, J. K., Levi, G., Grumet, M., Rieger, F. &Edelman, G. M. (1986) Altered expression of neuronal cell adhesion molecules induced by nerve injury and repair.Journal of Cell Biology 103, 929–45.

    Google Scholar 

  • Davis, G. E., Varon, S., Engvall, E. &Manthorpe, M. (1985) Substratum binding neurite-promoting factors: relationship to laminin.Trends in Neurosciences 8, 528–32.

    Google Scholar 

  • Eldridge, C. F., Bunge, M. B., Bunge, R. P. &Wood, P. M. (1987) Differentiation of axon-related Schwann cellsin vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation.Journal of Cell Biology 105, 1023–34.

    Google Scholar 

  • Franklin, R. J. M., Crang, A. J. &Blakemore, W. F. (1992) The behaviour of meningeal cells following glial cell transplantation into chemically-induced areas of demyelination in the CNS.Neuropathology and Applied Neurobiology 18, 189–200.

    Google Scholar 

  • Garcia-Rill, E., Houle, J. D., Reese, N. B. &Skinner, R. D. (1992) Modulation of locomotion by a nerve graft across a spinal transection in rat.Restorative Neurology and Neuroscience 4, 419–24.

    Google Scholar 

  • Guénard, V., Morrissey, T. K., Kleitman, N., Bunge, R. P. &Aebischer, P. (1991) Cultured syngeneic adult Schwann cells seeded in synthetic guidance channels enhance sciatic and optic nerve regeneration.Society for Neuroscience Abstracts 17, 565.

    Google Scholar 

  • Guénard, V., Kleitman, N., Morrissey, T. K., Bunge, R. P. &Aebischer, P. (1992) Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration.Journal of Neuroscience 12, 3310–20.

    Google Scholar 

  • Guénard, V., Xu, X. M. &Bunge, M. B. (1993) The use of Schwann cell transplantation to foster central nervous system repair.Seminars in the Neurosciences (in press).

  • Gundersen, R. W. &Barrett, J. N. (1980) Characterization of the turning response of dorsal root neurites toward nerve growth factor.Journal of Cell Biology 87, 546–54.

    Google Scholar 

  • Hall, S. &Berry, M. (1989) Electron microscopic study of the interaction of axons and glia at the site of anastomosis between the optic nerve and cellular and acellular sciatic nerve grafts.Journal of Neurocytology 18, 171–84.

    Google Scholar 

  • Heumann, R., Korsching, S., Bandtlow, C. &Thoenen, H. (1987) Changes of nerve growth factor synthesis in nonneuronal cells in response to sciatic nerve transection.Journal of Cell Biology 104, 1623–31.

    Google Scholar 

  • Hopkins, J. M. &Bunge, R. P. (1991a) Regeneration of axons from adult rat retinal ganglion cells on cultured Schwann cells is not dependent on basal lamina.Glia 4, 46–55.

    Google Scholar 

  • Hopkins, J. M. &Bunge, R. P. (1991b) Regeneration of axons from adult human retinain vitro.Experimental Neurology 112, 243–51.

    Google Scholar 

  • Hopkins, J. M., Schachner, M. &Bunge, R. P. (1989) Antibodies against the cell adhesion molecule L1 do not block growth of adult rat retinal ganglion cell axons on Schwann cells.Society for Neuroscience Abstracts 15, 331.

    Google Scholar 

  • Houle, J. D. (1991) Demonstration of the potential for chronically injured neurons to regenerate axons into intraspinal peripheral nerve grafts.Experimental Neurology 113, 1–9.

    Google Scholar 

  • Kaufman, L. M. &Barrett, J. N. (1983) Serum factor supporting long-term survival of rat central neurons in culture.Science 220, 1394–6.

    Google Scholar 

  • Kleitman, N., Wood, P., Johnson, M. I. &Bunge, R. P. (1988a) Schwann cell surfaces but not extracellular matrix organized by Schwann cells support neurite outgrowth from embryonic rat retina.Journal of Neuroscience 8, 653–63.

    Google Scholar 

  • Kleitman, N., Simon, D. K., Schachner, M. (1988b) Growth of embryonic retinal neurites elicited by contact with Schwann cell surfaces is blocked by antibodies to L1.Experimental Neurology 102, 298–306.

    Google Scholar 

  • Kleitman, N., Wood, P. M. &Bunge, R. P. (1991) Tissue culture methods for the study of myelination. In:Neuronal Cell Culture (edited byBanker, G. A. &Goslin, K.) pp. 337–77. Boston: MIT Press.

    Google Scholar 

  • Kromer, L. F. &Cornbrooks, C. J. (1985) Transplants of Schwann cell cultures promote axonal regeneration in the adult mammalian brain.Proceedings of the National Academy of Sciences (USA) 82, 6330–4.

    Google Scholar 

  • Kromer, L. F. &Cornbrooks, C. J. (1987) Identification of trophic factors and transplanted cellular environments that promote CNS axonal regeneration.Annals of the New York Academy of Sciences 495, 207–23.

    Google Scholar 

  • Kuffler, D. P. (1986) Isolated satellite cells of a peripheral nerve direct the growth of regenerating frog axons.Journal of Comparative Neurology 249, 57–64.

    Google Scholar 

  • Kuhlengel, K. R., Bunge, M. B. &Bunge, R. P. (1990) Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord. I. Methods for preparing implants from dissociated cells.Journal of Comparative Neurology 293, 63–73.

    Google Scholar 

  • Leoz-Ortín, G. &Arcaute, L. R. (1913) Procesos regenerativos del nervio óptico y retina con ocasión de ingertos nerviosos.Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid 11, 239–54.

    Google Scholar 

  • Lu, X. &Richardson, P. M. (1991) Inflammation near the nerve cell body enhances axonal regeneration.Journal of Neuroscience 11, 972–8.

    Google Scholar 

  • Martin, D., Schoenen, J., Delrée, P., Leprince, P., Rogister, B. &Moonen, G. (1991) Grafts of syngeneic cultured, adult dorsal root ganglion-derived Schwann cells to the injured spinal cord of adult rats: preliminary morphological studies.Neuroscience Letters 124, 44–8.

    Google Scholar 

  • Mirsky, R. &Jessen, K. R. (1990) Schwann cell development and the regulation of myelination.Seminars in the Neurosciences 2, 423–35.

    Google Scholar 

  • Montgomery, C. T. &Robson, J. A. (1990) New method of transplanting purified glial cells into the brain.Journal of Neuroscience Methods 32, 135–41.

    Google Scholar 

  • Montgomery, C. T. &Robson, J. A. (1993) Implants of cultured Schwann cells support axonal growth in the central nervous system of adult rats.Experimental Neurology 122, 107–24.

    Google Scholar 

  • Moya, F., Bunge, M. B. &Bunge, R. P. (1980) Schwann cells proliferate but fail to differentiate in defined medium.Proceedings of the National Academy of Sciences (USA) 77, 6902–6.

    Google Scholar 

  • Nieke, J. &Schachner, M. (1985) Expression of the neural cell adhesion molecules L1 and N-CAM and their common carbohydrate epitope L2/HNK-1 during development and after transection of the mouse sciatic nerve.Differentiation 30, 141–51.

    Google Scholar 

  • Nornes, H., Björklund, A. &Stenevi, U. (1984) Transplantation strategies in spinal cord regeneration. In:Neural Transplants (edited bySladek, J. R. Jr &Gash, D. M.) pp. 407–21. New York: Plenum Press.

    Google Scholar 

  • Paíno, C. L. &Bunge, M. B. (1990) Axon growth into implants of Schwann cells placed in lesioned spinal cord.Society for Neuroscience Abstracts 16, 1282.

    Google Scholar 

  • Paíno, C. L. &Bunge, M. B. (1991) Induction of axon growth into Schwann cell implants grafted into lesioned adult rat spinal cord.Experimental Neurology 114, 254–7.

    Google Scholar 

  • Paíno, C. L., Fernandez-Valle, C. &Bunge, M. B. (1991) Axon growth into Schwann cell grafts placed in lesioned adult rat spinal cord.Society for Neuroscience Abstracts 17, 236.

    Google Scholar 

  • Porter, S., Clark, M. B., Glaser, L. &Bunge, R. P. (1986) Schwann cells stimulated to proliferate in the absence of neurons retain full functional capability.Journal of Neuroscience 6, 3070–8.

    Google Scholar 

  • Ramön Y Cajal, S. (1928)Degeneration and Regeneration of the Nervous System. May, R. M. (Translator), London: Hafner Publishing Co.

    Google Scholar 

  • Rende, M., Muir, D., Ruoslahti, E., Hagg, T., Varon, S. &Manthorpe, M. (1992) Immunolocalization of ciliary neuronotrophic factor in adult rat sciatic nerve.Glia 5, 25–32.

    Google Scholar 

  • Richardson, P. M., Mcguinness, U. M. &Aguayo, A. J. (1980) Axons from CNS neurones regenerate into PNS grafts.Nature 284, 264–5.

    Google Scholar 

  • Richardson, P. M., Mcguinness, U. M. &Aguayo, A. J. (1982) Peripheral nerve autografts to the rat spinal cord: studies with axonal tracing methods.Brain Research 237, 147–62.

    Google Scholar 

  • Richardson, P. M., Issa, V. M. K. &Aguayo, A. J. (1984) Regeneration of long spinal axons in the rat.Journal of Neurocytology 13, 165–82.

    Google Scholar 

  • Schachner, M. (1990) Functional implications of glial cell recognition molecules.Seminars in the Neurosciences 2, 497–507.

    Google Scholar 

  • Schnell, L. &Schwab, M. E. (1990) Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors.Nature 343, 269–72.

    Google Scholar 

  • Sevier, A. E. &Munger, B. L. (1965) A silver method for paraffin sections of neural tissue.Journal of Neuropathology and Experimental Neurology 24, 130–5.

    Google Scholar 

  • Smith, G. V. &Stevenson, J. A. (1988) Peripheral nerve grafts lacking viable Schwann cells fail to support central nervous system axonal regeneration.Experimental Brain Research 69, 299–306.

    Google Scholar 

  • Taniuchi, M., Clark, H. B. &Johnson, E. M. Jr. (1986) Induction of nerve growth factor receptor in Schwann cells after axotomy.Proceedings of the National Academy of Sciences (USA) 83, 4094–8.

    Google Scholar 

  • Tello, F. (1911) La influencia del neurotropismo en la regeneración de los centros nerviosos.Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid 9, 123–59.

    Google Scholar 

  • Uzman, B. G. &Villegas, G. M. (1983) Mouse sciatic nerve regeneration through semipermeable tubes: a quantitative model.Journal of Neuroscience Research 9, 325–38.

    Google Scholar 

  • Venstrom, K. A. &Reichardt, L. F. (1993) Extracellular matrix 2: Role of extracellular matrix molecules and their receptors in the nervous system.FASEB Journal 7, 996–1003.

    Google Scholar 

  • Watson, B. D., Holets, V. R., Prado, R. &Bunge, M. B. (1993) Laser-driven photochemical induction of spinal cord injury in the rat: methodology, histopathology, and applications.Neuroprotocols 3, 3–15.

    Google Scholar 

  • Wood, P. M. (1976) Separation of functional Schwann cells and neurons from normal peripheral tissue.Brain Research 115, 361–75.

    Google Scholar 

  • Wrathall, J. R., Rigamonti, D. D., Braford, M. R. &Kao, C. C. (1982) Reconstruction of the contused cat spinal cord by the delayed nerve cell graft technique and cultured peripheral non-neuronal cells.Acta Neuropathologica 57, 59–69.

    Google Scholar 

  • Xu, X. M., Guénard, V., Kleitman, N. &Bunge, M. B. (1992) Axonal growth into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord.Society for Neuroscience Abstracts 18, 1479.

    Google Scholar 

  • Xu, X. M., Guénard, V., Chen, A., Kleitman, N. &Bunge, M. B. (1993a) Rostral and caudal axonal regeneration into Schwann cell-seeded guidance channels grafted into a gap in adult rat spinal cord.Society for Neuroscience Abstracts 19, 681.

    Google Scholar 

  • Xu, X. M., Guénard, V., Kleitman, N. &Bunge, M. B. (1993b) Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. (Submitted)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paíno, C.L., Fernandez-Valle, C., Bates, M.L. et al. Regrowth of axons in lesioned adult rat spinal cord: promotion by implants of cultured Schwann cells. J Neurocytol 23, 433–452 (1994). https://doi.org/10.1007/BF01207115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01207115

Keywords

Navigation